aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorAUTOMATIC1111 <16777216c@gmail.com>2023-08-04 06:09:09 +0000
committerAUTOMATIC1111 <16777216c@gmail.com>2023-08-04 06:13:46 +0000
commitf0c1063a707a4a43823b0ed00e2a8eeb22a9ed0a (patch)
tree34a1afac76c34a13adf346850e7e97f91254494f
parent09165916fa2b16d8f1d622ef1743e37565cc39f3 (diff)
downloadstable-diffusion-webui-gfx803-f0c1063a707a4a43823b0ed00e2a8eeb22a9ed0a.tar.gz
stable-diffusion-webui-gfx803-f0c1063a707a4a43823b0ed00e2a8eeb22a9ed0a.tar.bz2
stable-diffusion-webui-gfx803-f0c1063a707a4a43823b0ed00e2a8eeb22a9ed0a.zip
resolve some of circular import issues for kohaku
-rw-r--r--modules/hypernetworks/hypernetwork.py5
-rw-r--r--modules/processing.py7
-rw-r--r--modules/sd_hijack.py6
-rw-r--r--modules/sd_samplers_common.py10
-rw-r--r--modules/textual_inversion/textual_inversion.py4
5 files changed, 17 insertions, 15 deletions
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index c4821d21..70f1cbd2 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -10,7 +10,7 @@ import torch
import tqdm
from einops import rearrange, repeat
from ldm.util import default
-from modules import devices, processing, sd_models, shared, sd_samplers, hashes, sd_hijack_checkpoint, errors
+from modules import devices, sd_models, shared, sd_samplers, hashes, sd_hijack_checkpoint, errors
from modules.textual_inversion import textual_inversion, logging
from modules.textual_inversion.learn_schedule import LearnRateScheduler
from torch import einsum
@@ -469,8 +469,7 @@ def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None,
def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, varsize, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, use_weight, create_image_every, save_hypernetwork_every, template_filename, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
- # images allows training previews to have infotext. Importing it at the top causes a circular import problem.
- from modules import images
+ from modules import images, processing
save_hypernetwork_every = save_hypernetwork_every or 0
create_image_every = create_image_every or 0
diff --git a/modules/processing.py b/modules/processing.py
index 8f34c8b4..8086a2b0 100644
--- a/modules/processing.py
+++ b/modules/processing.py
@@ -30,6 +30,7 @@ from ldm.models.diffusion.ddpm import LatentDepth2ImageDiffusion
from einops import repeat, rearrange
from blendmodes.blend import blendLayers, BlendType
+decode_first_stage = sd_samplers_common.decode_first_stage
# some of those options should not be changed at all because they would break the model, so I removed them from options.
opt_C = 4
@@ -572,12 +573,6 @@ def decode_latent_batch(model, batch, target_device=None, check_for_nans=False):
return samples
-def decode_first_stage(model, x):
- x = model.decode_first_stage(x.to(devices.dtype_vae))
-
- return x
-
-
def get_fixed_seed(seed):
if seed is None or seed == '' or seed == -1:
return int(random.randrange(4294967294))
diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py
index cfa5f0eb..609fd56c 100644
--- a/modules/sd_hijack.py
+++ b/modules/sd_hijack.py
@@ -2,7 +2,6 @@ import torch
from torch.nn.functional import silu
from types import MethodType
-import modules.textual_inversion.textual_inversion
from modules import devices, sd_hijack_optimizations, shared, script_callbacks, errors, sd_unet
from modules.hypernetworks import hypernetwork
from modules.shared import cmd_opts
@@ -164,12 +163,13 @@ class StableDiffusionModelHijack:
clip = None
optimization_method = None
- embedding_db = modules.textual_inversion.textual_inversion.EmbeddingDatabase()
-
def __init__(self):
+ import modules.textual_inversion.textual_inversion
+
self.extra_generation_params = {}
self.comments = []
+ self.embedding_db = modules.textual_inversion.textual_inversion.EmbeddingDatabase()
self.embedding_db.add_embedding_dir(cmd_opts.embeddings_dir)
def apply_optimizations(self, option=None):
diff --git a/modules/sd_samplers_common.py b/modules/sd_samplers_common.py
index 5deda761..b3d344e7 100644
--- a/modules/sd_samplers_common.py
+++ b/modules/sd_samplers_common.py
@@ -2,7 +2,7 @@ from collections import namedtuple
import numpy as np
import torch
from PIL import Image
-from modules import devices, processing, images, sd_vae_approx, sd_samplers, sd_vae_taesd, shared
+from modules import devices, images, sd_vae_approx, sd_samplers, sd_vae_taesd, shared
from modules.shared import opts, state
SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options'])
@@ -35,7 +35,7 @@ def single_sample_to_image(sample, approximation=None):
x_sample = sample * 1.5
x_sample = sd_vae_taesd.model()(x_sample.to(devices.device, devices.dtype).unsqueeze(0))[0].detach()
else:
- x_sample = processing.decode_first_stage(shared.sd_model, sample.unsqueeze(0))[0] * 0.5 + 0.5
+ x_sample = decode_first_stage(shared.sd_model, sample.unsqueeze(0))[0] * 0.5 + 0.5
x_sample = torch.clamp(x_sample, min=0.0, max=1.0)
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
@@ -44,6 +44,12 @@ def single_sample_to_image(sample, approximation=None):
return Image.fromarray(x_sample)
+def decode_first_stage(model, x):
+ x = model.decode_first_stage(x.to(devices.dtype_vae))
+
+ return x
+
+
def sample_to_image(samples, index=0, approximation=None):
return single_sample_to_image(samples[index], approximation)
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index 4713bc2d..aa79dc09 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -13,7 +13,7 @@ import numpy as np
from PIL import Image, PngImagePlugin
from torch.utils.tensorboard import SummaryWriter
-from modules import shared, devices, sd_hijack, processing, sd_models, images, sd_samplers, sd_hijack_checkpoint, errors, hashes
+from modules import shared, devices, sd_hijack, sd_models, images, sd_samplers, sd_hijack_checkpoint, errors, hashes
import modules.textual_inversion.dataset
from modules.textual_inversion.learn_schedule import LearnRateScheduler
@@ -387,6 +387,8 @@ def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, dat
def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, varsize, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, use_weight, create_image_every, save_embedding_every, template_filename, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
+ from modules import processing
+
save_embedding_every = save_embedding_every or 0
create_image_every = create_image_every or 0
template_file = textual_inversion_templates.get(template_filename, None)