diff options
author | AUTOMATIC <16777216c@gmail.com> | 2023-05-01 11:27:53 +0000 |
---|---|---|
committer | AUTOMATIC <16777216c@gmail.com> | 2023-05-01 11:27:53 +0000 |
commit | fe8a10d428bcc6be9cc8efb9772eca9e40f98dc8 (patch) | |
tree | d1e0ff50e327c3c59230b39907284c20ffbf0fe3 | |
parent | 22bcc7be428c94e9408f589966c2040187245d81 (diff) | |
parent | 6fbd85dd0c0dffc06560bff91f4c4b65e441ca5f (diff) | |
download | stable-diffusion-webui-gfx803-fe8a10d428bcc6be9cc8efb9772eca9e40f98dc8.tar.gz stable-diffusion-webui-gfx803-fe8a10d428bcc6be9cc8efb9772eca9e40f98dc8.tar.bz2 stable-diffusion-webui-gfx803-fe8a10d428bcc6be9cc8efb9772eca9e40f98dc8.zip |
Merge branch 'release_candidate'
66 files changed, 1561 insertions, 342 deletions
@@ -32,4 +32,5 @@ notification.mp3 /extensions /test/stdout.txt /test/stderr.txt -/cache.json +/cache.json* +/config_states/ diff --git a/CHANGELOG.md b/CHANGELOG.md new file mode 100644 index 00000000..73b25eaf --- /dev/null +++ b/CHANGELOG.md @@ -0,0 +1,58 @@ +## Upcoming version:
+### Features:
+ * switch to torch 2.0.0 (except for AMD GPUs)
+ * visual improvements to custom code scripts
+ * add filename patterns: [clip_skip], [hasprompt<>], [batch_number], [generation_number]
+ * add support for saving init images in img2img, and record their hashes in infotext for reproducability
+ * automatically select current word when adjusting weight with ctrl+up/down
+ * add dropdowns for X/Y/Z plot
+ * setting: Stable Diffusion/Random number generator source: makes it possible to make images generated from a given manual seed consistent across different GPUs
+ * support Gradio's theme API
+ * use TCMalloc on Linux by default; possible fix for memory leaks
+ * (optimization) option to remove negative conditioning at low sigma values #9177
+ * embed model merge metadata in .safetensors file
+ * extension settings backup/restore feature #9169
+ * add "resize by" and "resize to" tabs to img2img
+ * add option "keep original size" to textual inversion images preprocess
+ * image viewer scrolling via analog stick
+ * button to restore the progress from session lost / tab reload
+
+### Minor:
+ * gradio bumped to 3.28.1
+ * in extra tab, change extras "scale to" to sliders
+ * add labels to tool buttons to make it possible to hide them
+ * add tiled inference support for ScuNET
+ * add branch support for extension installation
+ * change linux installation script to insall into current directory rather than /home/username
+ * sort textual inversion embeddings by name (case insensitive)
+ * allow styles.csv to be symlinked or mounted in docker
+ * remove the "do not add watermark to images" option
+ * make selected tab configurable with UI config
+ * extra networks UI in now fixed height and scrollable
+ * add disable_tls_verify arg for use with self-signed certs
+
+### Extensions:
+ * Add reload callback
+ * add is_hr_pass field for processing
+
+### Bug Fixes:
+ * fix broken batch image processing on 'Extras/Batch Process' tab
+ * add "None" option to extra networks dropdowns
+ * fix FileExistsError for CLIP Interrogator
+ * fix /sdapi/v1/txt2img endpoint not working on Linux #9319
+ * fix disappearing live previews and progressbar during slow tasks
+ * fix fullscreen image view not working properly in some cases
+ * prevent alwayson_scripts args param resizing script_arg list when they are inserted in it
+ * fix prompt schedule for second order samplers
+ * fix image mask/composite for weird resolutions #9628
+ * use correct images for previews when using AND (see #9491)
+ * one broken image in img2img batch won't stop all processing
+ * fix image orientation bug in train/preprocess
+ * fix Ngrok recreating tunnels every reload
+ * fix --realesrgan-models-path and --ldsr-models-path not working
+ * fix --skip-install not working
+ * outpainting Mk2 & Poorman should use the SAMPLE file format to save images, not GRID file format
+ * do not fail all Loras if some have failed to load when making a picture
+
+## Before versions:
+ * everything
@@ -100,7 +100,7 @@ Alternatively, use online services (like Google Colab): - [List of Online Services](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Online-Services)
### Automatic Installation on Windows
-1. Install [Python 3.10.6](https://www.python.org/downloads/windows/), checking "Add Python to PATH".
+1. Install [Python 3.10.6](https://www.python.org/downloads/release/python-3106/) (Newer version of Python does not support torch), checking "Add Python to PATH".
2. Install [git](https://git-scm.com/download/win).
3. Download the stable-diffusion-webui repository, for example by running `git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git`.
4. Run `webui-user.bat` from Windows Explorer as normal, non-administrator, user.
@@ -115,11 +115,12 @@ sudo dnf install wget git python3 # Arch-based:
sudo pacman -S wget git python3
```
-2. To install in `/home/$(whoami)/stable-diffusion-webui/`, run:
+2. Navigate to the directory you would like the webui to be installed and execute the following command:
```bash
bash <(wget -qO- https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui/master/webui.sh)
```
3. Run `webui.sh`.
+4. Check `webui-user.sh` for options.
### Installation on Apple Silicon
Find the instructions [here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Installation-on-Apple-Silicon).
@@ -158,4 +159,4 @@ Licenses for borrowed code can be found in `Settings -> Licenses` screen, and al - Security advice - RyotaK
- UniPC sampler - Wenliang Zhao - https://github.com/wl-zhao/UniPC
- Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user.
-- (You)
\ No newline at end of file +- (You)
diff --git a/environment-wsl2.yaml b/environment-wsl2.yaml index f8872750..0c4ae680 100644 --- a/environment-wsl2.yaml +++ b/environment-wsl2.yaml @@ -4,8 +4,8 @@ channels: - defaults dependencies: - python=3.10 - - pip=22.2.2 - - cudatoolkit=11.3 - - pytorch=1.12.1 - - torchvision=0.13.1 - - numpy=1.23.1
\ No newline at end of file + - pip=23.0 + - cudatoolkit=11.8 + - pytorch=2.0 + - torchvision=0.15 + - numpy=1.23 diff --git a/extensions-builtin/LDSR/scripts/ldsr_model.py b/extensions-builtin/LDSR/scripts/ldsr_model.py index b8cff29b..da19cff1 100644 --- a/extensions-builtin/LDSR/scripts/ldsr_model.py +++ b/extensions-builtin/LDSR/scripts/ldsr_model.py @@ -25,22 +25,28 @@ class UpscalerLDSR(Upscaler): yaml_path = os.path.join(self.model_path, "project.yaml") old_model_path = os.path.join(self.model_path, "model.pth") new_model_path = os.path.join(self.model_path, "model.ckpt") - safetensors_model_path = os.path.join(self.model_path, "model.safetensors") + + local_model_paths = self.find_models(ext_filter=[".ckpt", ".safetensors"]) + local_ckpt_path = next(iter([local_model for local_model in local_model_paths if local_model.endswith("model.ckpt")]), None) + local_safetensors_path = next(iter([local_model for local_model in local_model_paths if local_model.endswith("model.safetensors")]), None) + local_yaml_path = next(iter([local_model for local_model in local_model_paths if local_model.endswith("project.yaml")]), None) + if os.path.exists(yaml_path): statinfo = os.stat(yaml_path) if statinfo.st_size >= 10485760: print("Removing invalid LDSR YAML file.") os.remove(yaml_path) + if os.path.exists(old_model_path): print("Renaming model from model.pth to model.ckpt") os.rename(old_model_path, new_model_path) - if os.path.exists(safetensors_model_path): - model = safetensors_model_path + + if local_safetensors_path is not None and os.path.exists(local_safetensors_path): + model = local_safetensors_path else: - model = load_file_from_url(url=self.model_url, model_dir=self.model_path, - file_name="model.ckpt", progress=True) - yaml = load_file_from_url(url=self.yaml_url, model_dir=self.model_path, - file_name="project.yaml", progress=True) + model = local_ckpt_path if local_ckpt_path is not None else load_file_from_url(url=self.model_url, model_dir=self.model_path, file_name="model.ckpt", progress=True) + + yaml = local_yaml_path if local_yaml_path is not None else load_file_from_url(url=self.yaml_url, model_dir=self.model_path, file_name="project.yaml", progress=True) try: return LDSR(model, yaml) diff --git a/extensions-builtin/Lora/extra_networks_lora.py b/extensions-builtin/Lora/extra_networks_lora.py index 6be6ef73..45f899fc 100644 --- a/extensions-builtin/Lora/extra_networks_lora.py +++ b/extensions-builtin/Lora/extra_networks_lora.py @@ -8,7 +8,7 @@ class ExtraNetworkLora(extra_networks.ExtraNetwork): def activate(self, p, params_list):
additional = shared.opts.sd_lora
- if additional != "" and additional in lora.available_loras and len([x for x in params_list if x.items[0] == additional]) == 0:
+ if additional != "None" and additional in lora.available_loras and len([x for x in params_list if x.items[0] == additional]) == 0:
p.all_prompts = [x + f"<lora:{additional}:{shared.opts.extra_networks_default_multiplier}>" for x in p.all_prompts]
params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier]))
diff --git a/extensions-builtin/Lora/lora.py b/extensions-builtin/Lora/lora.py index d3eb0d3b..6f246921 100644 --- a/extensions-builtin/Lora/lora.py +++ b/extensions-builtin/Lora/lora.py @@ -211,7 +211,11 @@ def load_loras(names, multipliers=None): lora_on_disk = loras_on_disk[i]
if lora_on_disk is not None:
if lora is None or os.path.getmtime(lora_on_disk.filename) > lora.mtime:
- lora = load_lora(name, lora_on_disk.filename)
+ try:
+ lora = load_lora(name, lora_on_disk.filename)
+ except Exception as e:
+ errors.display(e, f"loading Lora {lora_on_disk.filename}")
+ continue
if lora is None:
print(f"Couldn't find Lora with name {name}")
diff --git a/extensions-builtin/Lora/scripts/lora_script.py b/extensions-builtin/Lora/scripts/lora_script.py index 0adab225..3fc38ab9 100644 --- a/extensions-builtin/Lora/scripts/lora_script.py +++ b/extensions-builtin/Lora/scripts/lora_script.py @@ -52,5 +52,5 @@ script_callbacks.on_before_ui(before_ui) shared.options_templates.update(shared.options_section(('extra_networks', "Extra Networks"), {
- "sd_lora": shared.OptionInfo("None", "Add Lora to prompt", gr.Dropdown, lambda: {"choices": [""] + [x for x in lora.available_loras]}, refresh=lora.list_available_loras),
+ "sd_lora": shared.OptionInfo("None", "Add Lora to prompt", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in lora.available_loras]}, refresh=lora.list_available_loras),
}))
diff --git a/extensions-builtin/ScuNET/scripts/scunet_model.py b/extensions-builtin/ScuNET/scripts/scunet_model.py index e0fbf3a3..c7fd5739 100644 --- a/extensions-builtin/ScuNET/scripts/scunet_model.py +++ b/extensions-builtin/ScuNET/scripts/scunet_model.py @@ -5,11 +5,15 @@ import traceback import PIL.Image import numpy as np import torch +from tqdm import tqdm + from basicsr.utils.download_util import load_file_from_url import modules.upscaler from modules import devices, modelloader from scunet_model_arch import SCUNet as net +from modules.shared import opts +from modules import images class UpscalerScuNET(modules.upscaler.Upscaler): @@ -42,28 +46,78 @@ class UpscalerScuNET(modules.upscaler.Upscaler): scalers.append(scaler_data2) self.scalers = scalers - def do_upscale(self, img: PIL.Image, selected_file): + @staticmethod + @torch.no_grad() + def tiled_inference(img, model): + # test the image tile by tile + h, w = img.shape[2:] + tile = opts.SCUNET_tile + tile_overlap = opts.SCUNET_tile_overlap + if tile == 0: + return model(img) + + device = devices.get_device_for('scunet') + assert tile % 8 == 0, "tile size should be a multiple of window_size" + sf = 1 + + stride = tile - tile_overlap + h_idx_list = list(range(0, h - tile, stride)) + [h - tile] + w_idx_list = list(range(0, w - tile, stride)) + [w - tile] + E = torch.zeros(1, 3, h * sf, w * sf, dtype=img.dtype, device=device) + W = torch.zeros_like(E, dtype=devices.dtype, device=device) + + with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="ScuNET tiles") as pbar: + for h_idx in h_idx_list: + + for w_idx in w_idx_list: + + in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile] + + out_patch = model(in_patch) + out_patch_mask = torch.ones_like(out_patch) + + E[ + ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf + ].add_(out_patch) + W[ + ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf + ].add_(out_patch_mask) + pbar.update(1) + output = E.div_(W) + + return output + + def do_upscale(self, img: PIL.Image.Image, selected_file): + torch.cuda.empty_cache() model = self.load_model(selected_file) if model is None: + print(f"ScuNET: Unable to load model from {selected_file}", file=sys.stderr) return img device = devices.get_device_for('scunet') - img = np.array(img) - img = img[:, :, ::-1] - img = np.moveaxis(img, 2, 0) / 255 - img = torch.from_numpy(img).float() - img = img.unsqueeze(0).to(device) - - with torch.no_grad(): - output = model(img) - output = output.squeeze().float().cpu().clamp_(0, 1).numpy() - output = 255. * np.moveaxis(output, 0, 2) - output = output.astype(np.uint8) - output = output[:, :, ::-1] + tile = opts.SCUNET_tile + h, w = img.height, img.width + np_img = np.array(img) + np_img = np_img[:, :, ::-1] # RGB to BGR + np_img = np_img.transpose((2, 0, 1)) / 255 # HWC to CHW + torch_img = torch.from_numpy(np_img).float().unsqueeze(0).to(device) # type: ignore + + if tile > h or tile > w: + _img = torch.zeros(1, 3, max(h, tile), max(w, tile), dtype=torch_img.dtype, device=torch_img.device) + _img[:, :, :h, :w] = torch_img # pad image + torch_img = _img + + torch_output = self.tiled_inference(torch_img, model).squeeze(0) + torch_output = torch_output[:, :h * 1, :w * 1] # remove padding, if any + np_output: np.ndarray = torch_output.float().cpu().clamp_(0, 1).numpy() + del torch_img, torch_output torch.cuda.empty_cache() - return PIL.Image.fromarray(output, 'RGB') + + output = np_output.transpose((1, 2, 0)) # CHW to HWC + output = output[:, :, ::-1] # BGR to RGB + return PIL.Image.fromarray((output * 255).astype(np.uint8)) def load_model(self, path: str): device = devices.get_device_for('scunet') @@ -84,4 +138,3 @@ class UpscalerScuNET(modules.upscaler.Upscaler): model = model.to(device) return model - diff --git a/extensions-builtin/prompt-bracket-checker/javascript/prompt-bracket-checker.js b/extensions-builtin/prompt-bracket-checker/javascript/prompt-bracket-checker.js index f0918e26..5c7a836a 100644 --- a/extensions-builtin/prompt-bracket-checker/javascript/prompt-bracket-checker.js +++ b/extensions-builtin/prompt-bracket-checker/javascript/prompt-bracket-checker.js @@ -1,103 +1,42 @@ // Stable Diffusion WebUI - Bracket checker -// Version 1.0 -// By Hingashi no Florin/Bwin4L +// By Hingashi no Florin/Bwin4L & @akx // Counts open and closed brackets (round, square, curly) in the prompt and negative prompt text boxes in the txt2img and img2img tabs. // If there's a mismatch, the keyword counter turns red and if you hover on it, a tooltip tells you what's wrong. -function checkBrackets(evt, textArea, counterElt) { - errorStringParen = '(...) - Different number of opening and closing parentheses detected.\n'; - errorStringSquare = '[...] - Different number of opening and closing square brackets detected.\n'; - errorStringCurly = '{...} - Different number of opening and closing curly brackets detected.\n'; - - openBracketRegExp = /\(/g; - closeBracketRegExp = /\)/g; - - openSquareBracketRegExp = /\[/g; - closeSquareBracketRegExp = /\]/g; - - openCurlyBracketRegExp = /\{/g; - closeCurlyBracketRegExp = /\}/g; - - totalOpenBracketMatches = 0; - totalCloseBracketMatches = 0; - totalOpenSquareBracketMatches = 0; - totalCloseSquareBracketMatches = 0; - totalOpenCurlyBracketMatches = 0; - totalCloseCurlyBracketMatches = 0; - - openBracketMatches = textArea.value.match(openBracketRegExp); - if(openBracketMatches) { - totalOpenBracketMatches = openBracketMatches.length; - } - - closeBracketMatches = textArea.value.match(closeBracketRegExp); - if(closeBracketMatches) { - totalCloseBracketMatches = closeBracketMatches.length; - } - - openSquareBracketMatches = textArea.value.match(openSquareBracketRegExp); - if(openSquareBracketMatches) { - totalOpenSquareBracketMatches = openSquareBracketMatches.length; - } - - closeSquareBracketMatches = textArea.value.match(closeSquareBracketRegExp); - if(closeSquareBracketMatches) { - totalCloseSquareBracketMatches = closeSquareBracketMatches.length; - } - - openCurlyBracketMatches = textArea.value.match(openCurlyBracketRegExp); - if(openCurlyBracketMatches) { - totalOpenCurlyBracketMatches = openCurlyBracketMatches.length; - } - - closeCurlyBracketMatches = textArea.value.match(closeCurlyBracketRegExp); - if(closeCurlyBracketMatches) { - totalCloseCurlyBracketMatches = closeCurlyBracketMatches.length; - } - - if(totalOpenBracketMatches != totalCloseBracketMatches) { - if(!counterElt.title.includes(errorStringParen)) { - counterElt.title += errorStringParen; - } - } else { - counterElt.title = counterElt.title.replace(errorStringParen, ''); - } - - if(totalOpenSquareBracketMatches != totalCloseSquareBracketMatches) { - if(!counterElt.title.includes(errorStringSquare)) { - counterElt.title += errorStringSquare; - } - } else { - counterElt.title = counterElt.title.replace(errorStringSquare, ''); - } - - if(totalOpenCurlyBracketMatches != totalCloseCurlyBracketMatches) { - if(!counterElt.title.includes(errorStringCurly)) { - counterElt.title += errorStringCurly; +function checkBrackets(textArea, counterElt) { + var counts = {}; + (textArea.value.match(/[(){}\[\]]/g) || []).forEach(bracket => { + counts[bracket] = (counts[bracket] || 0) + 1; + }); + var errors = []; + |