diff options
author | Kohaku-Blueleaf <59680068+KohakuBlueleaf@users.noreply.github.com> | 2023-08-12 18:27:39 +0000 |
---|---|---|
committer | Kohaku-Blueleaf <59680068+KohakuBlueleaf@users.noreply.github.com> | 2023-08-12 18:27:39 +0000 |
commit | bd4da4474bef5c9c1f690c62b971704ee73d2860 (patch) | |
tree | f3624d0521366fb23c4e7861ea1d0a04b43483e6 /extensions-builtin/Lora/network_norm.py | |
parent | b2080756fcdc328292fc38998c06ccf23e53bd7e (diff) | |
download | stable-diffusion-webui-gfx803-bd4da4474bef5c9c1f690c62b971704ee73d2860.tar.gz stable-diffusion-webui-gfx803-bd4da4474bef5c9c1f690c62b971704ee73d2860.tar.bz2 stable-diffusion-webui-gfx803-bd4da4474bef5c9c1f690c62b971704ee73d2860.zip |
Add extra norm module into built-in lora ext
refer to LyCORIS 1.9.0.dev6
add new option and module for training norm layer
(Which is reported to be good for style)
Diffstat (limited to 'extensions-builtin/Lora/network_norm.py')
-rw-r--r-- | extensions-builtin/Lora/network_norm.py | 29 |
1 files changed, 29 insertions, 0 deletions
diff --git a/extensions-builtin/Lora/network_norm.py b/extensions-builtin/Lora/network_norm.py new file mode 100644 index 00000000..dab8b684 --- /dev/null +++ b/extensions-builtin/Lora/network_norm.py @@ -0,0 +1,29 @@ +import network + + +class ModuleTypeNorm(network.ModuleType): + def create_module(self, net: network.Network, weights: network.NetworkWeights): + if all(x in weights.w for x in ["w_norm", "b_norm"]): + return NetworkModuleNorm(net, weights) + + return None + + +class NetworkModuleNorm(network.NetworkModule): + def __init__(self, net: network.Network, weights: network.NetworkWeights): + super().__init__(net, weights) + print("NetworkModuleNorm") + + self.w_norm = weights.w.get("w_norm") + self.b_norm = weights.w.get("b_norm") + + def calc_updown(self, orig_weight): + output_shape = self.w_norm.shape + updown = self.w_norm.to(orig_weight.device, dtype=orig_weight.dtype) + + if self.b_norm is not None: + ex_bias = self.b_norm.to(orig_weight.device, dtype=orig_weight.dtype) + else: + ex_bias = None + + return self.finalize_updown(updown, orig_weight, output_shape, ex_bias) |