diff options
author | AUTOMATIC1111 <16777216c@gmail.com> | 2024-03-02 04:03:13 +0000 |
---|---|---|
committer | AUTOMATIC1111 <16777216c@gmail.com> | 2024-03-02 04:03:13 +0000 |
commit | bef51aed032c0aaa5cfd80445bc4cf0d85b408b5 (patch) | |
tree | 42957c454a4ac8d98488f19811b60359d05d88ba /extensions-builtin/Lora | |
parent | cf2772fab0af5573da775e7437e6acdca424f26e (diff) | |
parent | 13984857890401e8605a3e53bd671e900a18d73f (diff) | |
download | stable-diffusion-webui-gfx803-bef51aed032c0aaa5cfd80445bc4cf0d85b408b5.tar.gz stable-diffusion-webui-gfx803-bef51aed032c0aaa5cfd80445bc4cf0d85b408b5.tar.bz2 stable-diffusion-webui-gfx803-bef51aed032c0aaa5cfd80445bc4cf0d85b408b5.zip |
Merge branch 'release_candidate'
Diffstat (limited to 'extensions-builtin/Lora')
-rw-r--r-- | extensions-builtin/Lora/network.py | 35 | ||||
-rw-r--r-- | extensions-builtin/Lora/network_full.py | 4 | ||||
-rw-r--r-- | extensions-builtin/Lora/network_glora.py | 10 | ||||
-rw-r--r-- | extensions-builtin/Lora/network_hada.py | 12 | ||||
-rw-r--r-- | extensions-builtin/Lora/network_ia3.py | 2 | ||||
-rw-r--r-- | extensions-builtin/Lora/network_lokr.py | 18 | ||||
-rw-r--r-- | extensions-builtin/Lora/network_lora.py | 6 | ||||
-rw-r--r-- | extensions-builtin/Lora/network_norm.py | 4 | ||||
-rw-r--r-- | extensions-builtin/Lora/network_oft.py | 100 | ||||
-rw-r--r-- | extensions-builtin/Lora/networks.py | 42 | ||||
-rw-r--r-- | extensions-builtin/Lora/preload.py | 5 | ||||
-rw-r--r-- | extensions-builtin/Lora/scripts/lora_script.py | 2 | ||||
-rw-r--r-- | extensions-builtin/Lora/ui_edit_user_metadata.py | 9 | ||||
-rw-r--r-- | extensions-builtin/Lora/ui_extra_networks_lora.py | 10 |
14 files changed, 178 insertions, 81 deletions
diff --git a/extensions-builtin/Lora/network.py b/extensions-builtin/Lora/network.py index 6021fd8d..b8fd9194 100644 --- a/extensions-builtin/Lora/network.py +++ b/extensions-builtin/Lora/network.py @@ -3,6 +3,9 @@ import os from collections import namedtuple
import enum
+import torch.nn as nn
+import torch.nn.functional as F
+
from modules import sd_models, cache, errors, hashes, shared
NetworkWeights = namedtuple('NetworkWeights', ['network_key', 'sd_key', 'w', 'sd_module'])
@@ -115,6 +118,29 @@ class NetworkModule: if hasattr(self.sd_module, 'weight'):
self.shape = self.sd_module.weight.shape
+ self.ops = None
+ self.extra_kwargs = {}
+ if isinstance(self.sd_module, nn.Conv2d):
+ self.ops = F.conv2d
+ self.extra_kwargs = {
+ 'stride': self.sd_module.stride,
+ 'padding': self.sd_module.padding
+ }
+ elif isinstance(self.sd_module, nn.Linear):
+ self.ops = F.linear
+ elif isinstance(self.sd_module, nn.LayerNorm):
+ self.ops = F.layer_norm
+ self.extra_kwargs = {
+ 'normalized_shape': self.sd_module.normalized_shape,
+ 'eps': self.sd_module.eps
+ }
+ elif isinstance(self.sd_module, nn.GroupNorm):
+ self.ops = F.group_norm
+ self.extra_kwargs = {
+ 'num_groups': self.sd_module.num_groups,
+ 'eps': self.sd_module.eps
+ }
+
self.dim = None
self.bias = weights.w.get("bias")
self.alpha = weights.w["alpha"].item() if "alpha" in weights.w else None
@@ -137,7 +163,7 @@ class NetworkModule: def finalize_updown(self, updown, orig_weight, output_shape, ex_bias=None):
if self.bias is not None:
updown = updown.reshape(self.bias.shape)
- updown += self.bias.to(orig_weight.device, dtype=orig_weight.dtype)
+ updown += self.bias.to(orig_weight.device, dtype=updown.dtype)
updown = updown.reshape(output_shape)
if len(output_shape) == 4:
@@ -155,5 +181,10 @@ class NetworkModule: raise NotImplementedError()
def forward(self, x, y):
- raise NotImplementedError()
+ """A general forward implementation for all modules"""
+ if self.ops is None:
+ raise NotImplementedError()
+ else:
+ updown, ex_bias = self.calc_updown(self.sd_module.weight)
+ return y + self.ops(x, weight=updown, bias=ex_bias, **self.extra_kwargs)
diff --git a/extensions-builtin/Lora/network_full.py b/extensions-builtin/Lora/network_full.py index bf6930e9..f221c95f 100644 --- a/extensions-builtin/Lora/network_full.py +++ b/extensions-builtin/Lora/network_full.py @@ -18,9 +18,9 @@ class NetworkModuleFull(network.NetworkModule): def calc_updown(self, orig_weight):
output_shape = self.weight.shape
- updown = self.weight.to(orig_weight.device, dtype=orig_weight.dtype)
+ updown = self.weight.to(orig_weight.device)
if self.ex_bias is not None:
- ex_bias = self.ex_bias.to(orig_weight.device, dtype=orig_weight.dtype)
+ ex_bias = self.ex_bias.to(orig_weight.device)
else:
ex_bias = None
diff --git a/extensions-builtin/Lora/network_glora.py b/extensions-builtin/Lora/network_glora.py index 492d4870..efe5c681 100644 --- a/extensions-builtin/Lora/network_glora.py +++ b/extensions-builtin/Lora/network_glora.py @@ -22,12 +22,12 @@ class NetworkModuleGLora(network.NetworkModule): self.w2b = weights.w["b2.weight"] def calc_updown(self, orig_weight): - w1a = self.w1a.to(orig_weight.device, dtype=orig_weight.dtype) - w1b = self.w1b.to(orig_weight.device, dtype=orig_weight.dtype) - w2a = self.w2a.to(orig_weight.device, dtype=orig_weight.dtype) - w2b = self.w2b.to(orig_weight.device, dtype=orig_weight.dtype) + w1a = self.w1a.to(orig_weight.device) + w1b = self.w1b.to(orig_weight.device) + w2a = self.w2a.to(orig_weight.device) + w2b = self.w2b.to(orig_weight.device) output_shape = [w1a.size(0), w1b.size(1)] - updown = ((w2b @ w1b) + ((orig_weight @ w2a) @ w1a)) + updown = ((w2b @ w1b) + ((orig_weight.to(dtype = w1a.dtype) @ w2a) @ w1a)) return self.finalize_updown(updown, orig_weight, output_shape) diff --git a/extensions-builtin/Lora/network_hada.py b/extensions-builtin/Lora/network_hada.py index 5fcb0695..d95a0fd1 100644 --- a/extensions-builtin/Lora/network_hada.py +++ b/extensions-builtin/Lora/network_hada.py @@ -27,16 +27,16 @@ class NetworkModuleHada(network.NetworkModule): self.t2 = weights.w.get("hada_t2")
def calc_updown(self, orig_weight):
- w1a = self.w1a.to(orig_weight.device, dtype=orig_weight.dtype)
- w1b = self.w1b.to(orig_weight.device, dtype=orig_weight.dtype)
- w2a = self.w2a.to(orig_weight.device, dtype=orig_weight.dtype)
- w2b = self.w2b.to(orig_weight.device, dtype=orig_weight.dtype)
+ w1a = self.w1a.to(orig_weight.device)
+ w1b = self.w1b.to(orig_weight.device)
+ w2a = self.w2a.to(orig_weight.device)
+ w2b = self.w2b.to(orig_weight.device)
output_shape = [w1a.size(0), w1b.size(1)]
if self.t1 is not None:
output_shape = [w1a.size(1), w1b.size(1)]
- t1 = self.t1.to(orig_weight.device, dtype=orig_weight.dtype)
+ t1 = self.t1.to(orig_weight.device)
updown1 = lyco_helpers.make_weight_cp(t1, w1a, w1b)
output_shape += t1.shape[2:]
else:
@@ -45,7 +45,7 @@ class NetworkModuleHada(network.NetworkModule): updown1 = lyco_helpers.rebuild_conventional(w1a, w1b, output_shape)
if self.t2 is not None:
- t2 = self.t2.to(orig_weight.device, dtype=orig_weight.dtype)
+ t2 = self.t2.to(orig_weight.device)
updown2 = lyco_helpers.make_weight_cp(t2, w2a, w2b)
else:
updown2 = lyco_helpers.rebuild_conventional(w2a, w2b, output_shape)
diff --git a/extensions-builtin/Lora/network_ia3.py b/extensions-builtin/Lora/network_ia3.py index 7edc4249..96faeaf3 100644 --- a/extensions-builtin/Lora/network_ia3.py +++ b/extensions-builtin/Lora/network_ia3.py @@ -17,7 +17,7 @@ class NetworkModuleIa3(network.NetworkModule): self.on_input = weights.w["on_input"].item()
def calc_updown(self, orig_weight):
- w = self.w.to(orig_weight.device, dtype=orig_weight.dtype)
+ w = self.w.to(orig_weight.device)
output_shape = [w.size(0), orig_weight.size(1)]
if self.on_input:
diff --git a/extensions-builtin/Lora/network_lokr.py b/extensions-builtin/Lora/network_lokr.py index 340acdab..fcdaeafd 100644 --- a/extensions-builtin/Lora/network_lokr.py +++ b/extensions-builtin/Lora/network_lokr.py @@ -37,22 +37,22 @@ class NetworkModuleLokr(network.NetworkModule): def calc_updown(self, orig_weight):
if self.w1 is not None:
- w1 = self.w1.to(orig_weight.device, dtype=orig_weight.dtype)
+ w1 = self.w1.to(orig_weight.device)
else:
- w1a = self.w1a.to(orig_weight.device, dtype=orig_weight.dtype)
- w1b = self.w1b.to(orig_weight.device, dtype=orig_weight.dtype)
+ w1a = self.w1a.to(orig_weight.device)
+ w1b = self.w1b.to(orig_weight.device)
w1 = w1a @ w1b
if self.w2 is not None:
- w2 = self.w2.to(orig_weight.device, dtype=orig_weight.dtype)
+ w2 = self.w2.to(orig_weight.device)
elif self.t2 is None:
- w2a = self.w2a.to(orig_weight.device, dtype=orig_weight.dtype)
- w2b = self.w2b.to(orig_weight.device, dtype=orig_weight.dtype)
+ w2a = self.w2a.to(orig_weight.device)
+ w2b = self.w2b.to(orig_weight.device)
w2 = w2a @ w2b
else:
- t2 = self.t2.to(orig_weight.device, dtype=orig_weight.dtype)
- w2a = self.w2a.to(orig_weight.device, dtype=orig_weight.dtype)
- w2b = self.w2b.to(orig_weight.device, dtype=orig_weight.dtype)
+ t2 = self.t2.to(orig_weight.device)
+ w2a = self.w2a.to(orig_weight.device)
+ w2b = self.w2b.to(orig_weight.device)
w2 = lyco_helpers.make_weight_cp(t2, w2a, w2b)
output_shape = [w1.size(0) * w2.size(0), w1.size(1) * w2.size(1)]
diff --git a/extensions-builtin/Lora/network_lora.py b/extensions-builtin/Lora/network_lora.py index 26c0a72c..4cc40295 100644 --- a/extensions-builtin/Lora/network_lora.py +++ b/extensions-builtin/Lora/network_lora.py @@ -61,13 +61,13 @@ class NetworkModuleLora(network.NetworkModule): return module
def calc_updown(self, orig_weight):
- up = self.up_model.weight.to(orig_weight.device, dtype=orig_weight.dtype)
- down = self.down_model.weight.to(orig_weight.device, dtype=orig_weight.dtype)
+ up = self.up_model.weight.to(orig_weight.device)
+ down = self.down_model.weight.to(orig_weight.device)
output_shape = [up.size(0), down.size(1)]
if self.mid_model is not None:
# cp-decomposition
- mid = self.mid_model.weight.to(orig_weight.device, dtype=orig_weight.dtype)
+ mid = self.mid_model.weight.to(orig_weight.device)
updown = lyco_helpers.rebuild_cp_decomposition(up, down, mid)
output_shape += mid.shape[2:]
else:
diff --git a/extensions-builtin/Lora/network_norm.py b/extensions-builtin/Lora/network_norm.py index ce450158..d25afcbb 100644 --- a/extensions-builtin/Lora/network_norm.py +++ b/extensions-builtin/Lora/network_norm.py @@ -18,10 +18,10 @@ class NetworkModuleNorm(network.NetworkModule): def calc_updown(self, orig_weight): output_shape = self.w_norm.shape - updown = self.w_norm.to(orig_weight.device, dtype=orig_weight.dtype) + updown = self.w_norm.to(orig_weight.device) if self.b_norm is not None: - ex_bias = self.b_norm.to(orig_weight.device, dtype=orig_weight.dtype) + ex_bias = self.b_norm.to(orig_weight.device) else: ex_bias = None diff --git a/extensions-builtin/Lora/network_oft.py b/extensions-builtin/Lora/network_oft.py index fa647020..7821a8a7 100644 --- a/extensions-builtin/Lora/network_oft.py +++ b/extensions-builtin/Lora/network_oft.py @@ -1,6 +1,5 @@ import torch import network -from lyco_helpers import factorization from einops import rearrange @@ -22,20 +21,28 @@ class NetworkModuleOFT(network.NetworkModule): self.org_module: list[torch.Module] = [self.sd_module] self.scale = 1.0 + self.is_R = False + self.is_boft = False - # kohya-ss + # kohya-ss/New LyCORIS OFT/BOFT if "oft_blocks" in weights.w.keys(): - self.is_kohya = True self.oft_blocks = weights.w["oft_blocks"] # (num_blocks, block_size, block_size) - self.alpha = weights.w["alpha"] # alpha is constraint + self.alpha = weights.w.get("alpha", None) # alpha is constraint self.dim = self.oft_blocks.shape[0] # lora dim - # LyCORIS + # Old LyCORIS OFT elif "oft_diag" in weights.w.keys(): - self.is_kohya = False + self.is_R = True self.oft_blocks = weights.w["oft_diag"] # self.alpha is unused self.dim = self.oft_blocks.shape[1] # (num_blocks, block_size, block_size) + # LyCORIS BOFT + if self.oft_blocks.dim() == 4: + self.is_boft = True + self.rescale = weights.w.get('rescale', None) + if self.rescale is not None: + self.rescale = self.rescale.reshape(-1, *[1]*(self.org_module[0].weight.dim() - 1)) + is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear] is_conv = type(self.sd_module) in [torch.nn.Conv2d] is_other_linear = type(self.sd_module) in [torch.nn.MultiheadAttention] # unsupported @@ -47,36 +54,65 @@ class NetworkModuleOFT(network.NetworkModule): elif is_other_linear: self.out_dim = self.sd_module.embed_dim - if self.is_kohya: - self.constraint = self.alpha * self.out_dim - self.num_blocks = self.dim - self.block_size = self.out_dim // self.dim - else: + self.num_blocks = self.dim + self.block_size = self.out_dim // self.dim + self.constraint = (0 if self.alpha is None else self.alpha) * self.out_dim + if self.is_R: self.constraint = None - self.block_size, self.num_blocks = factorization(self.out_dim, self.dim) + self.block_size = self.dim + self.num_blocks = self.out_dim // self.dim + elif self.is_boft: + self.boft_m = self.oft_blocks.shape[0] + self.num_blocks = self.oft_blocks.shape[1] + self.block_size = self.oft_blocks.shape[2] + self.boft_b = self.block_size def calc_updown(self, orig_weight): - oft_blocks = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype) - eye = torch.eye(self.block_size, device=self.oft_blocks.device) - - if self.is_kohya: - block_Q = oft_blocks - oft_blocks.transpose(1, 2) # ensure skew-symmetric orthogonal matrix - norm_Q = torch.norm(block_Q.flatten()) - new_norm_Q = torch.clamp(norm_Q, max=self.constraint) - block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8)) + oft_blocks = self.oft_blocks.to(orig_weight.device) + eye = torch.eye(self.block_size, device=oft_blocks.device) + + if not self.is_R: + block_Q = oft_blocks - oft_blocks.transpose(-1, -2) # ensure skew-symmetric orthogonal matrix + if self.constraint != 0: + norm_Q = torch.norm(block_Q.flatten()) + new_norm_Q = torch.clamp(norm_Q, max=self.constraint.to(oft_blocks.device)) + block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8)) oft_blocks = torch.matmul(eye + block_Q, (eye - block_Q).float().inverse()) - R = oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype) - - # This errors out for MultiheadAttention, might need to be handled up-stream - merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size) - merged_weight = torch.einsum( - 'k n m, k n ... -> k m ...', - R, - merged_weight - ) - merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...') - - updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight + R = oft_blocks.to(orig_weight.device) + + if not self.is_boft: + # This errors out for MultiheadAttention, might need to be handled up-stream + merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size) + merged_weight = torch.einsum( + 'k n m, k n ... -> k m ...', + R, + merged_weight + ) + merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...') + else: + # TODO: determine correct value for scale + scale = 1.0 + m = self.boft_m + b = self.boft_b + r_b = b // 2 + inp = orig_weight + for i in range(m): + bi = R[i] # b_num, b_size, b_size + if i == 0: + # Apply multiplier/scale and rescale into first weight + bi = bi * scale + (1 - scale) * eye + inp = rearrange(inp, "(c g k) ... -> (c k g) ...", g=2, k=2**i * r_b) + inp = rearrange(inp, "(d b) ... -> d b ...", b=b) + inp = torch.einsum("b i j, b j ... -> b i ...", bi, inp) + inp = rearrange(inp, "d b ... -> (d b) ...") + inp = rearrange(inp, "(c k g) ... -> (c g k) ...", g=2, k=2**i * r_b) + merged_weight = inp + + # Rescale mechanism + if self.rescale is not None: + merged_weight = self.rescale.to(merged_weight) * merged_weight + + updown = merged_weight.to(orig_weight.device) - orig_weight.to(merged_weight.dtype) output_shape = orig_weight.shape return self.finalize_updown(updown, orig_weight, output_shape) diff --git a/extensions-builtin/Lora/networks.py b/extensions-builtin/Lora/networks.py index 629bf853..83ea2802 100644 --- a/extensions-builtin/Lora/networks.py +++ b/extensions-builtin/Lora/networks.py @@ -1,3 +1,4 @@ +import gradio as gr
import logging
import os
import re
@@ -259,11 +260,11 @@ def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=No loaded_networks.clear()
- networks_on_disk = [available_network_aliases.get(name, None) for name in names]
+ networks_on_disk = [available_networks.get(name, None) if name.lower() in forbidden_network_aliases else available_network_aliases.get(name, None) for name in names]
if any(x is None for x in networks_on_disk):
list_available_networks()
- networks_on_disk = [available_network_aliases.get(name, None) for name in names]
+ networks_on_disk = [available_networks.get(name, None) if name.lower() in forbidden_network_aliases else available_network_aliases.get(name, None) for name in names]
failed_to_load_networks = []
@@ -314,7 +315,12 @@ def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=No emb_db.skipped_embeddings[name] = embedding
if failed_to_load_networks:
- sd_hijack.model_hijack.comments.append("Networks not found: " + ", ".join(failed_to_load_networks))
+ lora_not_found_message = f'Lora not found: {", ".join(failed_to_load_networks)}'
+ sd_hijack.model_hijack.comments.append(lora_not_found_message)
+ if shared.opts.lora_not_found_warning_console:
+ print(f'\n{lora_not_found_message}\n')
+ if shared.opts.lora_not_found_gradio_warning:
+ gr.Warning(lora_not_found_message)
purge_networks_from_memory()
@@ -389,18 +395,26 @@ def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn if module is not None and hasattr(self, 'weight'):
try:
with torch.no_grad():
- updown, ex_bias = module.calc_updown(self.weight)
+ if getattr(self, 'fp16_weight', None) is None:
+ weight = self.weight
+ bias = self.bias
+ else:
+ weight = self.fp16_weight.clone().to(self.weight.device)
+ bias = getattr(self, 'fp16_bias', None)
+ if bias is not None:
+ bias = bias.clone().to(self.bias.device)
+ updown, ex_bias = module.calc_updown(weight)
- if len(self.weight.shape) == 4 and self.weight.shape[1] == 9:
+ if len(weight.shape) == 4 and weight.shape[1] == 9:
# inpainting model. zero pad updown to make channel[1] 4 to 9
updown = torch.nn.functional.pad(updown, (0, 0, 0, 0, 0, 5))
- self.weight += updown
+ self.weight.copy_((weight.to(dtype=updown.dtype) + updown).to(dtype=self.weight.dtype))
if ex_bias is not None and hasattr(self, 'bias'):
if self.bias is None:
- self.bias = torch.nn.Parameter(ex_bias)
+ self.bias = torch.nn.Parameter(ex_bias).to(self.weight.dtype)
else:
- self.bias += ex_bias
+ self.bias.copy_((bias + ex_bias).to(dtype=self.bias.dtype))
except RuntimeError as e:
logging.debug(f"Network {net.name} layer {network_layer_name}: {e}")
extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1
@@ -444,23 +458,23 @@ def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn self.network_current_names = wanted_names
-def network_forward(module, input, original_forward):
+def network_forward(org_module, input, original_forward):
"""
Old way of applying Lora by executing operations during layer's forward.
Stacking many loras this way results in big performance degradation.
"""
if len(loaded_networks) == 0:
- return original_forward(module, input)
+ return original_forward(org_module, input)
input = devices.cond_cast_unet(input)
- network_restore_weights_from_backup(module)
- network_reset_cached_weight(module)
+ network_restore_weights_from_backup(org_module)
+ network_reset_cached_weight(org_module)
- y = original_forward(module, input)
+ y = original_forward(org_module, input)
- network_layer_name = getattr(module, 'network_layer_name', None)
+ network_layer_name = getattr(org_module, 'network_layer_name', None)
for lora in loaded_networks:
module = lora.modules.get(network_layer_name, None)
if module is None:
diff --git a/extensions-builtin/Lora/preload.py b/extensions-builtin/Lora/preload.py index 50961be3..52fab29b 100644 --- a/extensions-builtin/Lora/preload.py +++ b/extensions-builtin/Lora/preload.py @@ -1,7 +1,8 @@ import os
from modules import paths
+from modules.paths_internal import normalized_filepath
def preload(parser):
- parser.add_argument("--lora-dir", type=str, help="Path to directory with Lora networks.", default=os.path.join(paths.models_path, 'Lora'))
- parser.add_argument("--lyco-dir-backcompat", type=str, help="Path to directory with LyCORIS networks (for backawards compatibility; can also use --lyco-dir).", default=os.path.join(paths.models_path, 'LyCORIS'))
+ parser.add_argument("--lora-dir", type=normalized_filepath, help="Path to directory with Lora networks.", default=os.path.join(paths.models_path, 'Lora'))
+ parser.add_argument("--lyco-dir-backcompat", type=normalized_filepath, help="Path to directory with LyCORIS networks (for backawards compatibility; can also use --lyco-dir).", default=os.path.join(paths.models_path, 'LyCORIS'))
diff --git a/extensions-builtin/Lora/scripts/lora_script.py b/extensions-builtin/Lora/scripts/lora_script.py index ef23968c..1518f7e5 100644 --- a/extensions-builtin/Lora/scripts/lora_script.py +++ b/extensions-builtin/Lora/scripts/lora_script.py @@ -39,6 +39,8 @@ shared.options_templates.update(shared.options_section(('extra_networks', "Extra "lora_show_all": shared.OptionInfo(False, "Always show all networks on the Lora page").info("otherwise, those detected as for incompatible version of Stable Diffusion will be hidden"),
"lora_hide_unknown_for_versions": shared.OptionInfo([], "Hide networks of unknown versions for model versions", gr.CheckboxGroup, {"choices": ["SD1", "SD2", "SDXL"]}),
"lora_in_memory_limit": shared.OptionInfo(0, "Number of Lora networks to keep cached in memory", gr.Number, {"precision": 0}),
+ "lora_not_found_warning_console": shared.OptionInfo(False, "Lora not found warning in console"),
+ "lora_not_found_gradio_warning": shared.OptionInfo(False, "Lora not found warning popup in webui"),
}))
diff --git a/extensions-builtin/Lora/ui_edit_user_metadata.py b/extensions-builtin/Lora/ui_edit_user_metadata.py index c7011909..3160aecf 100644 --- a/extensions-builtin/Lora/ui_edit_user_metadata.py +++ b/extensions-builtin/Lora/ui_edit_user_metadata.py @@ -54,12 +54,13 @@ class LoraUserMetadataEditor(ui_extra_networks_user_metadata.UserMetadataEditor) self.slider_preferred_weight = None
self.edit_notes = None
- def save_lora_user_metadata(self, name, desc, sd_version, activation_text, preferred_weight, notes):
+ def save_lora_user_metadata(self, name, desc, sd_version, activation_text, preferred_weight, negative_text, notes):
user_metadata = self.get_user_metadata(name)
user_metadata["description"] = desc
user_metadata["sd version"] = sd_version
user_metadata["activation text"] = activation_text
user_metadata["preferred weight"] = preferred_weight
+ user_metadata["negative text"] = negative_text
user_metadata["notes"] = notes
self.write_user_metadata(name, user_metadata)
@@ -127,6 +128,7 @@ class LoraUserMetadataEditor(ui_extra_networks_user_metadata.UserMetadataEditor) gr.HighlightedText.update(value=gradio_tags, visible=True if tags else False),
user_metadata.get('activation text', ''),
float(user_metadata.get('preferred weight', 0.0)),
+ user_metadata.get('negative text', ''),
gr.update(visible=True if tags else False),
gr.update(value=self.generate_random_prompt_from_tags(tags), visible=True if tags else False),
]
@@ -162,7 +164,7 @@ class LoraUserMetadataEditor(ui_extra_networks_user_metadata.UserMetadataEditor) self.taginfo = gr.HighlightedText(label="Training dataset tags")
self.edit_activation_text = gr.Text(label='Activation text', info="Will be added to prompt along with Lora")
self.slider_preferred_weight = gr.Slider(label='Preferred weight', info="Set to 0 to disable", minimum=0.0, maximum=2.0, step=0.01)
-
+ self.edit_negative_text = gr.Text(label='Negative prompt', info="Will be added to negative prompts")
with gr.Row() as row_random_prompt:
with gr.Column(scale=8):
random_prompt = gr.Textbox(label='Random prompt', lines=4, max_lines=4, interactive=False)
@@ -198,6 +200,7 @@ class LoraUserMetadataEditor(ui_extra_networks_user_metadata.UserMetadataEditor) self.taginfo,
self.edit_activation_text,
self.slider_preferred_weight,
+ self.edit_negative_text,
row_random_prompt,
random_prompt,
]
@@ -211,7 +214,9 @@ class LoraUserMetadataEditor(ui_extra_networks_user_metadata.UserMetadataEditor) self.select_sd_version,
self.edit_activation_text,
self.slider_preferred_weight,
+ self.edit_negative_text,
self.edit_notes,
]
+
self.setup_save_handler(self.button_save, self.save_lora_user_metadata, edited_components)
diff --git a/extensions-builtin/Lora/ui_extra_networks_lora.py b/extensions-builtin/Lora/ui_extra_networks_lora.py index df02c663..66d15dd0 100644 --- a/extensions-builtin/Lora/ui_extra_networks_lora.py +++ b/extensions-builtin/Lora/ui_extra_networks_lora.py @@ -24,13 +24,16 @@ class ExtraNetworksPageLora(ui_extra_networks.ExtraNetworksPage): alias = lora_on_disk.get_alias()
+ search_terms = [self.search_terms_from_path(lora_on_disk.filename)]
+ if lora_on_disk.hash:
+ search_terms.append(lora_on_disk.hash)
item = {
"name": name,
"filename": lora_on_disk.filename,
"shorthash": lora_on_disk.shorthash,
"preview": self.find_preview(path),
"description": self.find_description(path),
- "search_term": self.search_terms_from_path(lora_on_disk.filename) + " " + (lora_on_disk.hash or ""),
+ "search_terms": search_terms,
"local_preview": f"{path}.{shared.opts.samples_format}",
"metadata": lora_on_disk.metadata,
"sort_keys": {'default': index, **self.get_sort_keys(lora_on_disk.filename)},
@@ -45,6 +48,11 @@ class ExtraNetworksPageLora(ui_extra_networks.ExtraNetworksPage): if activation_text:
item["prompt"] += " + " + quote_js(" " + activation_text)
+ negative_prompt = item["user_metadata"].get("negative text")
+ item["negative_prompt"] = quote_js("")
+ if negative_prompt:
+ item["negative_prompt"] = quote_js('(' + negative_prompt + ':1)')
+
sd_version = item["user_metadata"].get("sd version")
if sd_version in network.SdVersion.__members__:
item["sd_version"] = sd_version
|