diff options
author | AUTOMATIC1111 <16777216c@gmail.com> | 2023-11-26 05:29:12 +0000 |
---|---|---|
committer | AUTOMATIC1111 <16777216c@gmail.com> | 2023-11-26 05:29:12 +0000 |
commit | 3a9bf4ac10d99feb81b0e637417a108d3fa5ac06 (patch) | |
tree | 33075c897430a3a580df048dd50fba24069b6c79 /extensions-builtin/hypertile/hypertile.py | |
parent | 97431f29feb17ffc96ca95e9b3efec87be9d8b3a (diff) | |
download | stable-diffusion-webui-gfx803-3a9bf4ac10d99feb81b0e637417a108d3fa5ac06.tar.gz stable-diffusion-webui-gfx803-3a9bf4ac10d99feb81b0e637417a108d3fa5ac06.tar.bz2 stable-diffusion-webui-gfx803-3a9bf4ac10d99feb81b0e637417a108d3fa5ac06.zip |
move file
Diffstat (limited to 'extensions-builtin/hypertile/hypertile.py')
-rw-r--r-- | extensions-builtin/hypertile/hypertile.py | 371 |
1 files changed, 371 insertions, 0 deletions
diff --git a/extensions-builtin/hypertile/hypertile.py b/extensions-builtin/hypertile/hypertile.py new file mode 100644 index 00000000..be898fce --- /dev/null +++ b/extensions-builtin/hypertile/hypertile.py @@ -0,0 +1,371 @@ +""" +Hypertile module for splitting attention layers in SD-1.5 U-Net and SD-1.5 VAE +Warn : The patch works well only if the input image has a width and height that are multiples of 128 +Author : @tfernd Github : https://github.com/tfernd/HyperTile +""" + +from __future__ import annotations +from typing import Callable +from typing_extensions import Literal + +import logging +from functools import wraps, cache +from contextlib import contextmanager + +import math +import torch.nn as nn +import random + +from einops import rearrange + +# TODO add SD-XL layers +DEPTH_LAYERS = { + 0: [ + # SD 1.5 U-Net (diffusers) + "down_blocks.0.attentions.0.transformer_blocks.0.attn1", + "down_blocks.0.attentions.1.transformer_blocks.0.attn1", + "up_blocks.3.attentions.0.transformer_blocks.0.attn1", + "up_blocks.3.attentions.1.transformer_blocks.0.attn1", + "up_blocks.3.attentions.2.transformer_blocks.0.attn1", + # SD 1.5 U-Net (ldm) + "input_blocks.1.1.transformer_blocks.0.attn1", + "input_blocks.2.1.transformer_blocks.0.attn1", + "output_blocks.9.1.transformer_blocks.0.attn1", + "output_blocks.10.1.transformer_blocks.0.attn1", + "output_blocks.11.1.transformer_blocks.0.attn1", + # SD 1.5 VAE + "decoder.mid_block.attentions.0", + "decoder.mid.attn_1", + ], + 1: [ + # SD 1.5 U-Net (diffusers) + "down_blocks.1.attentions.0.transformer_blocks.0.attn1", + "down_blocks.1.attentions.1.transformer_blocks.0.attn1", + "up_blocks.2.attentions.0.transformer_blocks.0.attn1", + "up_blocks.2.attentions.1.transformer_blocks.0.attn1", + "up_blocks.2.attentions.2.transformer_blocks.0.attn1", + # SD 1.5 U-Net (ldm) + "input_blocks.4.1.transformer_blocks.0.attn1", + "input_blocks.5.1.transformer_blocks.0.attn1", + "output_blocks.6.1.transformer_blocks.0.attn1", + "output_blocks.7.1.transformer_blocks.0.attn1", + "output_blocks.8.1.transformer_blocks.0.attn1", + ], + 2: [ + # SD 1.5 U-Net (diffusers) + "down_blocks.2.attentions.0.transformer_blocks.0.attn1", + "down_blocks.2.attentions.1.transformer_blocks.0.attn1", + "up_blocks.1.attentions.0.transformer_blocks.0.attn1", + "up_blocks.1.attentions.1.transformer_blocks.0.attn1", + "up_blocks.1.attentions.2.transformer_blocks.0.attn1", + # SD 1.5 U-Net (ldm) + "input_blocks.7.1.transformer_blocks.0.attn1", + "input_blocks.8.1.transformer_blocks.0.attn1", + "output_blocks.3.1.transformer_blocks.0.attn1", + "output_blocks.4.1.transformer_blocks.0.attn1", + "output_blocks.5.1.transformer_blocks.0.attn1", + ], + 3: [ + # SD 1.5 U-Net (diffusers) + "mid_block.attentions.0.transformer_blocks.0.attn1", + # SD 1.5 U-Net (ldm) + "middle_block.1.transformer_blocks.0.attn1", + ], +} +# XL layers, thanks for GitHub@gel-crabs for the help +DEPTH_LAYERS_XL = { + 0: [ + # SD 1.5 U-Net (diffusers) + "down_blocks.0.attentions.0.transformer_blocks.0.attn1", + "down_blocks.0.attentions.1.transformer_blocks.0.attn1", + "up_blocks.3.attentions.0.transformer_blocks.0.attn1", + "up_blocks.3.attentions.1.transformer_blocks.0.attn1", + "up_blocks.3.attentions.2.transformer_blocks.0.attn1", + # SD 1.5 U-Net (ldm) + "input_blocks.4.1.transformer_blocks.0.attn1", + "input_blocks.5.1.transformer_blocks.0.attn1", + "output_blocks.3.1.transformer_blocks.0.attn1", + "output_blocks.4.1.transformer_blocks.0.attn1", + "output_blocks.5.1.transformer_blocks.0.attn1", + # SD 1.5 VAE + "decoder.mid_block.attentions.0", + "decoder.mid.attn_1", + ], + 1: [ + # SD 1.5 U-Net (diffusers) + #"down_blocks.1.attentions.0.transformer_blocks.0.attn1", + #"down_blocks.1.attentions.1.transformer_blocks.0.attn1", + #"up_blocks.2.attentions.0.transformer_blocks.0.attn1", + #"up_blocks.2.attentions.1.transformer_blocks.0.attn1", + #"up_blocks.2.attentions.2.transformer_blocks.0.attn1", + # SD 1.5 U-Net (ldm) + "input_blocks.4.1.transformer_blocks.1.attn1", + "input_blocks.5.1.transformer_blocks.1.attn1", + "output_blocks.3.1.transformer_blocks.1.attn1", + "output_blocks.4.1.transformer_blocks.1.attn1", + "output_blocks.5.1.transformer_blocks.1.attn1", + "input_blocks.7.1.transformer_blocks.0.attn1", + "input_blocks.8.1.transformer_blocks.0.attn1", + "output_blocks.0.1.transformer_blocks.0.attn1", + "output_blocks.1.1.transformer_blocks.0.attn1", + "output_blocks.2.1.transformer_blocks.0.attn1", + "input_blocks.7.1.transformer_blocks.1.attn1", + "input_blocks.8.1.transformer_blocks.1.attn1", + "output_blocks.0.1.transformer_blocks.1.attn1", + "output_blocks.1.1.transformer_blocks.1.attn1", + "output_blocks.2.1.transformer_blocks.1.attn1", + "input_blocks.7.1.transformer_blocks.2.attn1", + "input_blocks.8.1.transformer_blocks.2.attn1", + "output_blocks.0.1.transformer_blocks.2.attn1", + "output_blocks.1.1.transformer_blocks.2.attn1", + "output_blocks.2.1.transformer_blocks.2.attn1", + "input_blocks.7.1.transformer_blocks.3.attn1", + "input_blocks.8.1.transformer_blocks.3.attn1", + "output_blocks.0.1.transformer_blocks.3.attn1", + "output_blocks.1.1.transformer_blocks.3.attn1", + "output_blocks.2.1.transformer_blocks.3.attn1", + "input_blocks.7.1.transformer_blocks.4.attn1", + "input_blocks.8.1.transformer_blocks.4.attn1", + "output_blocks.0.1.transformer_blocks.4.attn1", + "output_blocks.1.1.transformer_blocks.4.attn1", + "output_blocks.2.1.transformer_blocks.4.attn1", + "input_blocks.7.1.transformer_blocks.5.attn1", + "input_blocks.8.1.transformer_blocks.5.attn1", + "output_blocks.0.1.transformer_blocks.5.attn1", + "output_blocks.1.1.transformer_blocks.5.attn1", + "output_blocks.2.1.transformer_blocks.5.attn1", + "input_blocks.7.1.transformer_blocks.6.attn1", + "input_blocks.8.1.transformer_blocks.6.attn1", + "output_blocks.0.1.transformer_blocks.6.attn1", + "output_blocks.1.1.transformer_blocks.6.attn1", + "output_blocks.2.1.transformer_blocks.6.attn1", + "input_blocks.7.1.transformer_blocks.7.attn1", + "input_blocks.8.1.transformer_blocks.7.attn1", + "output_blocks.0.1.transformer_blocks.7.attn1", + "output_blocks.1.1.transformer_blocks.7.attn1", + "output_blocks.2.1.transformer_blocks.7.attn1", + "input_blocks.7.1.transformer_blocks.8.attn1", + "input_blocks.8.1.transformer_blocks.8.attn1", + "output_blocks.0.1.transformer_blocks.8.attn1", + "output_blocks.1.1.transformer_blocks.8.attn1", + "output_blocks.2.1.transformer_blocks.8.attn1", + "input_blocks.7.1.transformer_blocks.9.attn1", + "input_blocks.8.1.transformer_blocks.9.attn1", + "output_blocks.0.1.transformer_blocks.9.attn1", + "output_blocks.1.1.transformer_blocks.9.attn1", + "output_blocks.2.1.transformer_blocks.9.attn1", + ], + 2: [ + # SD 1.5 U-Net (diffusers) + "mid_block.attentions.0.transformer_blocks.0.attn1", + # SD 1.5 U-Net (ldm) + "middle_block.1.transformer_blocks.0.attn1", + "middle_block.1.transformer_blocks.1.attn1", + "middle_block.1.transformer_blocks.2.attn1", + "middle_block.1.transformer_blocks.3.attn1", + "middle_block.1.transformer_blocks.4.attn1", + "middle_block.1.transformer_blocks.5.attn1", + "middle_block.1.transformer_blocks.6.attn1", + "middle_block.1.transformer_blocks.7.attn1", + "middle_block.1.transformer_blocks.8.attn1", + "middle_block.1.transformer_blocks.9.attn1", + ], + 3 : [] # TODO - separate layers for SD-XL +} + + +RNG_INSTANCE = random.Random() + +def random_divisor(value: int, min_value: int, /, max_options: int = 1) -> int: + """ + Returns a random divisor of value that + x * min_value <= value + if max_options is 1, the behavior is deterministic + """ + min_value = min(min_value, value) + + # All big divisors of value (inclusive) + divisors = [i for i in range(min_value, value + 1) if value % i == 0] # divisors in small -> big order + + ns = [value // i for i in divisors[:max_options]] # has at least 1 element # big -> small order + + idx = RNG_INSTANCE.randint(0, len(ns) - 1) + + return ns[idx] + +def set_hypertile_seed(seed: int) -> None: + RNG_INSTANCE.seed(seed) + +def largest_tile_size_available(width:int, height:int) -> int: + """ + Calculates the largest tile size available for a given width and height + Tile size is always a power of 2 + """ + gcd = math.gcd(width, height) + largest_tile_size_available = 1 + while gcd % (largest_tile_size_available * 2) == 0: + largest_tile_size_available *= 2 + return largest_tile_size_available + +def iterative_closest_divisors(hw:int, aspect_ratio:float) -> tuple[int, int]: + """ + Finds h and w such that h*w = hw and h/w = aspect_ratio + We check all possible divisors of hw and return the closest to the aspect ratio + """ + divisors = [i for i in range(2, hw + 1) if hw % i == 0] # all divisors of hw + pairs = [(i, hw // i) for i in divisors] # all pairs of divisors of hw + ratios = [w/h for h, w in pairs] # all ratios of pairs of divisors of hw + closest_ratio = min(ratios, key=lambda x: abs(x - aspect_ratio)) # closest ratio to aspect_ratio + closest_pair = pairs[ratios.index(closest_ratio)] # closest pair of divisors to aspect_ratio + return closest_pair + +@cache +def find_hw_candidates(hw:int, aspect_ratio:float) -> tuple[int, int]: + """ + Finds h and w such that h*w = hw and h/w = aspect_ratio + """ + h, w = round(math.sqrt(hw * aspect_ratio)), round(math.sqrt(hw / aspect_ratio)) + # find h and w such that h*w = hw and h/w = aspect_ratio + if h * w != hw: + w_candidate = hw / h + # check if w is an integer + if not w_candidate.is_integer(): + h_candidate = hw / w + # check if h is an integer + if not h_candidate.is_integer(): + return iterative_closest_divisors(hw, aspect_ratio) + else: + h = int(h_candidate) + else: + w = int(w_candidate) + return h, w + +@contextmanager +def split_attention( + layer: nn.Module, + /, + aspect_ratio: float, # width/height + tile_size: int = 128, # 128 for VAE + swap_size: int = 1, # 1 for VAE + *, + disable: bool = False, + max_depth: Literal[0, 1, 2, 3] = 0, # ! Try 0 or 1 + scale_depth: bool = True, # scale the tile-size depending on the depth + is_sdxl: bool = False, # is the model SD-XL +): + # Hijacks AttnBlock from ldm and Attention from diffusers + + if disable: + logging.info(f"Attention for {layer.__class__.__qualname__} not splitted") + yield + return + + latent_tile_size = max(128, tile_size) // 8 + + def self_attn_forward(forward: Callable, depth: int, layer_name: str, module: nn.Module) -> Callable: + @wraps(forward) + def wrapper(*args, **kwargs): + x = args[0] + + # VAE + if x.ndim == 4: + b, c, h, w = x.shape + + nh = random_divisor(h, latent_tile_size, swap_size) + nw = random_divisor(w, latent_tile_size, swap_size) + + if nh * nw > 1: + x = rearrange(x, "b c (nh h) (nw w) -> (b nh nw) c h w", nh=nh, nw=nw) # split into nh * nw tiles + + out = forward(x, *args[1:], **kwargs) + + if nh * nw > 1: + out = rearrange(out, "(b nh nw) c h w -> b c (nh h) (nw w)", nh=nh, nw=nw) + + # U-Net + else: + hw: int = x.size(1) + h, w = find_hw_candidates(hw, aspect_ratio) + assert h * w == hw, f"Invalid aspect ratio {aspect_ratio} for input of shape {x.shape}, hw={hw}, h={h}, w={w}" + + factor = 2**depth if scale_depth else 1 + nh = random_divisor(h, latent_tile_size * factor, swap_size) + nw = random_divisor(w, latent_tile_size * factor, swap_size) + + module._split_sizes_hypertile.append((nh, nw)) # type: ignore + + if nh * nw > 1: + x = rearrange(x, "b (nh h nw w) c -> (b nh nw) (h w) c", h=h // nh, w=w // nw, nh=nh, nw=nw) + + out = forward(x, *args[1:], **kwargs) + + if nh * nw > 1: + out = rearrange(out, "(b nh nw) hw c -> b nh nw hw c", nh=nh, nw=nw) + out = rearrange(out, "b nh nw (h w) c -> b (nh h nw w) c", h=h // nh, w=w // nw) + + return out + + return wrapper + + # Handle hijacking the forward method and recovering afterwards + try: + if is_sdxl: + layers = DEPTH_LAYERS_XL + else: + layers = DEPTH_LAYERS + for depth in range(max_depth + 1): + for layer_name, module in layer.named_modules(): + if any(layer_name.endswith(try_name) for try_name in layers[depth]): + # print input shape for debugging + logging.debug(f"HyperTile hijacking attention layer at depth {depth}: {layer_name}") + # hijack + module._original_forward_hypertile = module.forward + module.forward = self_attn_forward(module.forward, depth, layer_name, module) + module._split_sizes_hypertile = [] + yield + finally: + for layer_name, module in layer.named_modules(): + # remove hijack + if hasattr(module, "_original_forward_hypertile"): + if module._split_sizes_hypertile: + logging.debug(f"layer {layer_name} splitted with ({module._split_sizes_hypertile})") + # recover + module.forward = module._original_forward_hypertile + del module._original_forward_hypertile + del module._split_sizes_hypertile + +def hypertile_context_vae(model:nn.Module, aspect_ratio:float, tile_size:int, opts): + """ + Returns context manager for VAE + """ + enabled = opts.hypertile_split_vae_attn + swap_size = opts.hypertile_swap_size_vae + max_depth = opts.hypertile_max_depth_vae + tile_size_max = opts.hypertile_max_tile_vae + return split_attention( + model, + aspect_ratio=aspect_ratio, + tile_size=min(tile_size, tile_size_max), + swap_size=swap_size, + disable=not enabled, + max_depth=max_depth, + is_sdxl=False, + ) + +def hypertile_context_unet(model:nn.Module, aspect_ratio:float, tile_size:int, opts, is_sdxl:bool): + """ + Returns context manager for U-Net + """ + enabled = opts.hypertile_split_unet_attn + swap_size = opts.hypertile_swap_size_unet + max_depth = opts.hypertile_max_depth_unet + tile_size_max = opts.hypertile_max_tile_unet + return split_attention( + model, + aspect_ratio=aspect_ratio, + tile_size=min(tile_size, tile_size_max), + swap_size=swap_size, + disable=not enabled, + max_depth=max_depth, + is_sdxl=is_sdxl, + ) |