diff options
author | AUTOMATIC1111 <16777216c@gmail.com> | 2023-12-16 06:58:07 +0000 |
---|---|---|
committer | AUTOMATIC1111 <16777216c@gmail.com> | 2023-12-16 06:58:07 +0000 |
commit | cf2772fab0af5573da775e7437e6acdca424f26e (patch) | |
tree | 2ad13a0cf77bc189a8c9097bd507f9674f993da6 /extensions-builtin | |
parent | 4afaaf8a020c1df457bcf7250cb1c7f609699fa7 (diff) | |
parent | 0dfffe53ec11b2ee097d55efc479f8e707015db9 (diff) | |
download | stable-diffusion-webui-gfx803-cf2772fab0af5573da775e7437e6acdca424f26e.tar.gz stable-diffusion-webui-gfx803-cf2772fab0af5573da775e7437e6acdca424f26e.tar.bz2 stable-diffusion-webui-gfx803-cf2772fab0af5573da775e7437e6acdca424f26e.zip |
Merge branch 'release_candidate'
Diffstat (limited to 'extensions-builtin')
-rw-r--r-- | extensions-builtin/Lora/lora_logger.py | 33 | ||||
-rw-r--r-- | extensions-builtin/Lora/lyco_helpers.py | 47 | ||||
-rw-r--r-- | extensions-builtin/Lora/network.py | 1 | ||||
-rw-r--r-- | extensions-builtin/Lora/network_glora.py | 33 | ||||
-rw-r--r-- | extensions-builtin/Lora/network_oft.py | 82 | ||||
-rw-r--r-- | extensions-builtin/Lora/networks.py | 60 | ||||
-rw-r--r-- | extensions-builtin/Lora/ui_extra_networks_lora.py | 7 | ||||
-rw-r--r-- | extensions-builtin/extra-options-section/scripts/extra_options_section.py | 16 | ||||
-rw-r--r-- | extensions-builtin/hypertile/hypertile.py | 351 | ||||
-rw-r--r-- | extensions-builtin/hypertile/scripts/hypertile_script.py | 109 | ||||
-rw-r--r-- | extensions-builtin/hypertile/scripts/hypertile_xyz.py | 51 | ||||
-rw-r--r-- | extensions-builtin/mobile/javascript/mobile.js | 2 |
12 files changed, 783 insertions, 9 deletions
diff --git a/extensions-builtin/Lora/lora_logger.py b/extensions-builtin/Lora/lora_logger.py new file mode 100644 index 00000000..d51de297 --- /dev/null +++ b/extensions-builtin/Lora/lora_logger.py @@ -0,0 +1,33 @@ +import sys +import copy +import logging + + +class ColoredFormatter(logging.Formatter): + COLORS = { + "DEBUG": "\033[0;36m", # CYAN + "INFO": "\033[0;32m", # GREEN + "WARNING": "\033[0;33m", # YELLOW + "ERROR": "\033[0;31m", # RED + "CRITICAL": "\033[0;37;41m", # WHITE ON RED + "RESET": "\033[0m", # RESET COLOR + } + + def format(self, record): + colored_record = copy.copy(record) + levelname = colored_record.levelname + seq = self.COLORS.get(levelname, self.COLORS["RESET"]) + colored_record.levelname = f"{seq}{levelname}{self.COLORS['RESET']}" + return super().format(colored_record) + + +logger = logging.getLogger("lora") +logger.propagate = False + + +if not logger.handlers: + handler = logging.StreamHandler(sys.stdout) + handler.setFormatter( + ColoredFormatter("[%(name)s]-%(levelname)s: %(message)s") + ) + logger.addHandler(handler) diff --git a/extensions-builtin/Lora/lyco_helpers.py b/extensions-builtin/Lora/lyco_helpers.py index 279b34bc..1679a0ce 100644 --- a/extensions-builtin/Lora/lyco_helpers.py +++ b/extensions-builtin/Lora/lyco_helpers.py @@ -19,3 +19,50 @@ def rebuild_cp_decomposition(up, down, mid): up = up.reshape(up.size(0), -1)
down = down.reshape(down.size(0), -1)
return torch.einsum('n m k l, i n, m j -> i j k l', mid, up, down)
+
+
+# copied from https://github.com/KohakuBlueleaf/LyCORIS/blob/dev/lycoris/modules/lokr.py
+def factorization(dimension: int, factor:int=-1) -> tuple[int, int]:
+ '''
+ return a tuple of two value of input dimension decomposed by the number closest to factor
+ second value is higher or equal than first value.
+
+ In LoRA with Kroneckor Product, first value is a value for weight scale.
+ secon value is a value for weight.
+
+ Becuase of non-commutative property, A⊗B ≠ B⊗A. Meaning of two matrices is slightly different.
+
+ examples)
+ factor
+ -1 2 4 8 16 ...
+ 127 -> 1, 127 127 -> 1, 127 127 -> 1, 127 127 -> 1, 127 127 -> 1, 127
+ 128 -> 8, 16 128 -> 2, 64 128 -> 4, 32 128 -> 8, 16 128 -> 8, 16
+ 250 -> 10, 25 250 -> 2, 125 250 -> 2, 125 250 -> 5, 50 250 -> 10, 25
+ 360 -> 8, 45 360 -> 2, 180 360 -> 4, 90 360 -> 8, 45 360 -> 12, 30
+ 512 -> 16, 32 512 -> 2, 256 512 -> 4, 128 512 -> 8, 64 512 -> 16, 32
+ 1024 -> 32, 32 1024 -> 2, 512 1024 -> 4, 256 1024 -> 8, 128 1024 -> 16, 64
+ '''
+
+ if factor > 0 and (dimension % factor) == 0:
+ m = factor
+ n = dimension // factor
+ if m > n:
+ n, m = m, n
+ return m, n
+ if factor < 0:
+ factor = dimension
+ m, n = 1, dimension
+ length = m + n
+ while m<n:
+ new_m = m + 1
+ while dimension%new_m != 0:
+ new_m += 1
+ new_n = dimension // new_m
+ if new_m + new_n > length or new_m>factor:
+ break
+ else:
+ m, n = new_m, new_n
+ if m > n:
+ n, m = m, n
+ return m, n
+
diff --git a/extensions-builtin/Lora/network.py b/extensions-builtin/Lora/network.py index d8e8dfb7..6021fd8d 100644 --- a/extensions-builtin/Lora/network.py +++ b/extensions-builtin/Lora/network.py @@ -93,6 +93,7 @@ class Network: # LoraModule self.unet_multiplier = 1.0
self.dyn_dim = None
self.modules = {}
+ self.bundle_embeddings = {}
self.mtime = None
self.mentioned_name = None
diff --git a/extensions-builtin/Lora/network_glora.py b/extensions-builtin/Lora/network_glora.py new file mode 100644 index 00000000..492d4870 --- /dev/null +++ b/extensions-builtin/Lora/network_glora.py @@ -0,0 +1,33 @@ + +import network + +class ModuleTypeGLora(network.ModuleType): + def create_module(self, net: network.Network, weights: network.NetworkWeights): + if all(x in weights.w for x in ["a1.weight", "a2.weight", "alpha", "b1.weight", "b2.weight"]): + return NetworkModuleGLora(net, weights) + + return None + +# adapted from https://github.com/KohakuBlueleaf/LyCORIS +class NetworkModuleGLora(network.NetworkModule): + def __init__(self, net: network.Network, weights: network.NetworkWeights): + super().__init__(net, weights) + + if hasattr(self.sd_module, 'weight'): + self.shape = self.sd_module.weight.shape + + self.w1a = weights.w["a1.weight"] + self.w1b = weights.w["b1.weight"] + self.w2a = weights.w["a2.weight"] + self.w2b = weights.w["b2.weight"] + + def calc_updown(self, orig_weight): + w1a = self.w1a.to(orig_weight.device, dtype=orig_weight.dtype) + w1b = self.w1b.to(orig_weight.device, dtype=orig_weight.dtype) + w2a = self.w2a.to(orig_weight.device, dtype=orig_weight.dtype) + w2b = self.w2b.to(orig_weight.device, dtype=orig_weight.dtype) + + output_shape = [w1a.size(0), w1b.size(1)] + updown = ((w2b @ w1b) + ((orig_weight @ w2a) @ w1a)) + + return self.finalize_updown(updown, orig_weight, output_shape) diff --git a/extensions-builtin/Lora/network_oft.py b/extensions-builtin/Lora/network_oft.py new file mode 100644 index 00000000..fa647020 --- /dev/null +++ b/extensions-builtin/Lora/network_oft.py @@ -0,0 +1,82 @@ +import torch +import network +from lyco_helpers import factorization +from einops import rearrange + + +class ModuleTypeOFT(network.ModuleType): + def create_module(self, net: network.Network, weights: network.NetworkWeights): + if all(x in weights.w for x in ["oft_blocks"]) or all(x in weights.w for x in ["oft_diag"]): + return NetworkModuleOFT(net, weights) + + return None + +# Supports both kohya-ss' implementation of COFT https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py +# and KohakuBlueleaf's implementation of OFT/COFT https://github.com/KohakuBlueleaf/LyCORIS/blob/dev/lycoris/modules/diag_oft.py +class NetworkModuleOFT(network.NetworkModule): + def __init__(self, net: network.Network, weights: network.NetworkWeights): + + super().__init__(net, weights) + + self.lin_module = None + self.org_module: list[torch.Module] = [self.sd_module] + + self.scale = 1.0 + + # kohya-ss + if "oft_blocks" in weights.w.keys(): + self.is_kohya = True + self.oft_blocks = weights.w["oft_blocks"] # (num_blocks, block_size, block_size) + self.alpha = weights.w["alpha"] # alpha is constraint + self.dim = self.oft_blocks.shape[0] # lora dim + # LyCORIS + elif "oft_diag" in weights.w.keys(): + self.is_kohya = False + self.oft_blocks = weights.w["oft_diag"] + # self.alpha is unused + self.dim = self.oft_blocks.shape[1] # (num_blocks, block_size, block_size) + + is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear] + is_conv = type(self.sd_module) in [torch.nn.Conv2d] + is_other_linear = type(self.sd_module) in [torch.nn.MultiheadAttention] # unsupported + + if is_linear: + self.out_dim = self.sd_module.out_features + elif is_conv: + self.out_dim = self.sd_module.out_channels + elif is_other_linear: + self.out_dim = self.sd_module.embed_dim + + if self.is_kohya: + self.constraint = self.alpha * self.out_dim + self.num_blocks = self.dim + self.block_size = self.out_dim // self.dim + else: + self.constraint = None + self.block_size, self.num_blocks = factorization(self.out_dim, self.dim) + + def calc_updown(self, orig_weight): + oft_blocks = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype) + eye = torch.eye(self.block_size, device=self.oft_blocks.device) + + if self.is_kohya: + block_Q = oft_blocks - oft_blocks.transpose(1, 2) # ensure skew-symmetric orthogonal matrix + norm_Q = torch.norm(block_Q.flatten()) + new_norm_Q = torch.clamp(norm_Q, max=self.constraint) + block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8)) + oft_blocks = torch.matmul(eye + block_Q, (eye - block_Q).float().inverse()) + + R = oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype) + + # This errors out for MultiheadAttention, might need to be handled up-stream + merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size) + merged_weight = torch.einsum( + 'k n m, k n ... -> k m ...', + R, + merged_weight + ) + merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...') + + updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight + output_shape = orig_weight.shape + return self.finalize_updown(updown, orig_weight, output_shape) diff --git a/extensions-builtin/Lora/networks.py b/extensions-builtin/Lora/networks.py index 96f935b2..629bf853 100644 --- a/extensions-builtin/Lora/networks.py +++ b/extensions-builtin/Lora/networks.py @@ -5,16 +5,21 @@ import re import lora_patches
import network
import network_lora
+import network_glora
import network_hada
import network_ia3
import network_lokr
import network_full
import network_norm
+import network_oft
import torch
from typing import Union
from modules import shared, devices, sd_models, errors, scripts, sd_hijack
+import modules.textual_inversion.textual_inversion as textual_inversion
+
+from lora_logger import logger
module_types = [
network_lora.ModuleTypeLora(),
@@ -23,6 +28,8 @@ module_types = [ network_lokr.ModuleTypeLokr(),
network_full.ModuleTypeFull(),
network_norm.ModuleTypeNorm(),
+ network_glora.ModuleTypeGLora(),
+ network_oft.ModuleTypeOFT(),
]
@@ -149,9 +156,20 @@ def load_network(name, network_on_disk): is_sd2 = 'model_transformer_resblocks' in shared.sd_model.network_layer_mapping
matched_networks = {}
+ bundle_embeddings = {}
for key_network, weight in sd.items():
- key_network_without_network_parts, network_part = key_network.split(".", 1)
+ key_network_without_network_parts, _, network_part = key_network.partition(".")
+
+ if key_network_without_network_parts == "bundle_emb":
+ emb_name, vec_name = network_part.split(".", 1)
+ emb_dict = bundle_embeddings.get(emb_name, {})
+ if vec_name.split('.')[0] == 'string_to_param':
+ _, k2 = vec_name.split('.', 1)
+ emb_dict['string_to_param'] = {k2: weight}
+ else:
+ emb_dict[vec_name] = weight
+ bundle_embeddings[emb_name] = emb_dict
key = convert_diffusers_name_to_compvis(key_network_without_network_parts, is_sd2)
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
@@ -174,6 +192,17 @@ def load_network(name, network_on_disk): key = key_network_without_network_parts.replace("lora_te1_text_model", "transformer_text_model")
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
+ # kohya_ss OFT module
+ elif sd_module is None and "oft_unet" in key_network_without_network_parts:
+ key = key_network_without_network_parts.replace("oft_unet", "diffusion_model")
+ sd_module = shared.sd_model.network_layer_mapping.get(key, None)
+
+ # KohakuBlueLeaf OFT module
+ if sd_module is None and "oft_diag" in key:
+ key = key_network_without_network_parts.replace("lora_unet", "diffusion_model")
+ key = key_network_without_network_parts.replace("lora_te1_text_model", "0_transformer_text_model")
+ sd_module = shared.sd_model.network_layer_mapping.get(key, None)
+
if sd_module is None:
keys_failed_to_match[key_network] = key
continue
@@ -195,6 +224,14 @@ def load_network(name, network_on_disk): net.modules[key] = net_module
+ embeddings = {}
+ for emb_name, data in bundle_embeddings.items():
+ embedding = textual_inversion.create_embedding_from_data(data, emb_name, filename=network_on_disk.filename + "/" + emb_name)
+ embedding.loaded = None
+ embeddings[emb_name] = embedding
+
+ net.bundle_embeddings = embeddings
+
if keys_failed_to_match:
logging.debug(f"Network {network_on_disk.filename} didn't match keys: {keys_failed_to_match}")
@@ -210,11 +247,15 @@ def purge_networks_from_memory(): def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=None):
+ emb_db = sd_hijack.model_hijack.embedding_db
already_loaded = {}
for net in loaded_networks:
if net.name in names:
already_loaded[net.name] = net
+ for emb_name, embedding in net.bundle_embeddings.items():
+ if embedding.loaded:
+ emb_db.register_embedding_by_name(None, shared.sd_model, emb_name)
loaded_networks.clear()
@@ -257,6 +298,21 @@ def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=No net.dyn_dim = dyn_dims[i] if dyn_dims else 1.0
loaded_networks.append(net)
+ for emb_name, embedding in net.bundle_embeddings.items():
+ if embedding.loaded is None and emb_name in emb_db.word_embeddings:
+ logger.warning(
+ f'Skip bundle embedding: "{emb_name}"'
+ ' as it was already loaded from embeddings folder'
+ )
+ continue
+
+ embedding.loaded = False
+ if emb_db.expected_shape == -1 or emb_db.expected_shape == embedding.shape:
+ embedding.loaded = True
+ emb_db.register_embedding(embedding, shared.sd_model)
+ else:
+ emb_db.skipped_embeddings[name] = embedding
+
if failed_to_load_networks:
sd_hijack.model_hijack.comments.append("Networks not found: " + ", ".join(failed_to_load_networks))
@@ -418,6 +474,7 @@ def network_forward(module, input, original_forward): def network_reset_cached_weight(self: Union[torch.nn.Conv2d, torch.nn.Linear]):
self.network_current_names = ()
self.network_weights_backup = None
+ self.network_bias_backup = None
def network_Linear_forward(self, input):
@@ -564,6 +621,7 @@ extra_network_lora = None available_networks = {}
available_network_aliases = {}
loaded_networks = []
+loaded_bundle_embeddings = {}
networks_in_memory = {}
available_network_hash_lookup = {}
forbidden_network_aliases = {}
diff --git a/extensions-builtin/Lora/ui_extra_networks_lora.py b/extensions-builtin/Lora/ui_extra_networks_lora.py index 55409a78..df02c663 100644 --- a/extensions-builtin/Lora/ui_extra_networks_lora.py +++ b/extensions-builtin/Lora/ui_extra_networks_lora.py @@ -17,6 +17,8 @@ class ExtraNetworksPageLora(ui_extra_networks.ExtraNetworksPage): def create_item(self, name, index=None, enable_filter=True):
lora_on_disk = networks.available_networks.get(name)
+ if lora_on_disk is None:
+ return
path, ext = os.path.splitext(lora_on_disk.filename)
@@ -66,9 +68,10 @@ class ExtraNetworksPageLora(ui_extra_networks.ExtraNetworksPage): return item
def list_items(self):
- for index, name in enumerate(networks.available_networks):
+ # instantiate a list to protect against concurrent modification
+ names = list(networks.available_networks)
+ for index, name in enumerate(names):
item = self.create_item(name, index)
-
if item is not None:
yield item
diff --git a/extensions-builtin/extra-options-section/scripts/extra_options_section.py b/extensions-builtin/extra-options-section/scripts/extra_options_section.py index 983f87ff..ac2c3de4 100644 --- a/extensions-builtin/extra-options-section/scripts/extra_options_section.py +++ b/extensions-builtin/extra-options-section/scripts/extra_options_section.py @@ -23,11 +23,12 @@ class ExtraOptionsSection(scripts.Script): self.setting_names = []
self.infotext_fields = []
extra_options = shared.opts.extra_options_img2img if is_img2img else shared.opts.extra_options_txt2img
+ elem_id_tabname = "extra_options_" + ("img2img" if is_img2img else "txt2img")
mapping = {k: v for v, k in generation_parameters_copypaste.infotext_to_setting_name_mapping}
with gr.Blocks() as interface:
- with gr.Accordion("Options", open=False) if shared.opts.extra_options_accordion and extra_options else gr.Group():
+ with gr.Accordion("Options", open=False, elem_id=elem_id_tabname) if shared.opts.extra_options_accordion and extra_options else gr.Group(elem_id=elem_id_tabname):
row_count = math.ceil(len(extra_options) / shared.opts.extra_options_cols)
@@ -64,11 +65,14 @@ class ExtraOptionsSection(scripts.Script): p.override_settings[name] = value
-shared.options_templates.update(shared.options_section(('ui', "User interface"), {
- "extra_options_txt2img": shared.OptionInfo([], "Options in main UI - txt2img", ui_components.DropdownMulti, lambda: {"choices": list(shared.opts.data_labels.keys())}).js("info", "settingsHintsShowQuicksettings").info("setting entries that also appear in txt2img interfaces").needs_reload_ui(),
- "extra_options_img2img": shared.OptionInfo([], "Options in main UI - img2img", ui_components.DropdownMulti, lambda: {"choices": list(shared.opts.data_labels.keys())}).js("info", "settingsHintsShowQuicksettings").info("setting entries that also appear in img2img interfaces").needs_reload_ui(),
- "extra_options_cols": shared.OptionInfo(1, "Options in main UI - number of columns", gr.Number, {"precision": 0}).needs_reload_ui(),
- "extra_options_accordion": shared.OptionInfo(False, "Options in main UI - place into an accordion").needs_reload_ui()
+shared.options_templates.update(shared.options_section(('settings_in_ui', "Settings in UI", "ui"), {
+ "settings_in_ui": shared.OptionHTML("""
+This page allows you to add some settings to the main interface of txt2img and img2img tabs.
+"""),
+ "extra_options_txt2img": shared.OptionInfo([], "Settings for txt2img", ui_components.DropdownMulti, lambda: {"choices": list(shared.opts.data_labels.keys())}).js("info", "settingsHintsShowQuicksettings").info("setting entries that also appear in txt2img interfaces").needs_reload_ui(),
+ "extra_options_img2img": shared.OptionInfo([], "Settings for img2img", ui_components.DropdownMulti, lambda: {"choices": list(shared.opts.data_labels.keys())}).js("info", "settingsHintsShowQuicksettings").info("setting entries that also appear in img2img interfaces").needs_reload_ui(),
+ "extra_options_cols": shared.OptionInfo(1, "Number of columns for added settings", gr.Slider, {"step": 1, "minimum": 1, "maximum": 20}).info("displayed amount will depend on the actual browser window width").needs_reload_ui(),
+ "extra_options_accordion": shared.OptionInfo(False, "Place added settings into an accordion").needs_reload_ui()
}))
diff --git a/extensions-builtin/hypertile/hypertile.py b/extensions-builtin/hypertile/hypertile.py new file mode 100644 index 00000000..0f40e2d3 --- /dev/null +++ b/extensions-builtin/hypertile/hypertile.py @@ -0,0 +1,351 @@ +""" +Hypertile module for splitting attention layers in SD-1.5 U-Net and SD-1.5 VAE +Warn: The patch works well only if the input image has a width and height that are multiples of 128 +Original author: @tfernd Github: https://github.com/tfernd/HyperTile +""" + +from __future__ import annotations + +from dataclasses import dataclass +from typing import Callable + +from functools import wraps, cache + +import math +import torch.nn as nn +import random + +from einops import rearrange + + +@dataclass +class HypertileParams: + depth = 0 + layer_name = "" + tile_size: int = 0 + swap_size: int = 0 + aspect_ratio: float = 1.0 + forward = None + enabled = False + + + +# TODO add SD-XL layers +DEPTH_LAYERS = { + 0: [ + # SD 1.5 U-Net (diffusers) + "down_blocks.0.attentions.0.transformer_blocks.0.attn1", + "down_blocks.0.attentions.1.transformer_blocks.0.attn1", + "up_blocks.3.attentions.0.transformer_blocks.0.attn1", + "up_blocks.3.attentions.1.transformer_blocks.0.attn1", + "up_blocks.3.attentions.2.transformer_blocks.0.attn1", + # SD 1.5 U-Net (ldm) + "input_blocks.1.1.transformer_blocks.0.attn1", + "input_blocks.2.1.transformer_blocks.0.attn1", + "output_blocks.9.1.transformer_blocks.0.attn1", + "output_blocks.10.1.transformer_blocks.0.attn1", + "output_blocks.11.1.transformer_blocks.0.attn1", + # SD 1.5 VAE + "decoder.mid_block.attentions.0", + "decoder.mid.attn_1", + ], + 1: [ + # SD 1.5 U-Net (diffusers) + "down_blocks.1.attentions.0.transformer_blocks.0.attn1", + "down_blocks.1.attentions.1.transformer_blocks.0.attn1", + "up_blocks.2.attentions.0.transformer_blocks.0.attn1", + "up_blocks.2.attentions.1.transformer_blocks.0.attn1", + "up_blocks.2.attentions.2.transformer_blocks.0.attn1", + # SD 1.5 U-Net (ldm) + "input_blocks.4.1.transformer_blocks.0.attn1", + "input_blocks.5.1.transformer_blocks.0.attn1", + "output_blocks.6.1.transformer_blocks.0.attn1", + "output_blocks.7.1.transformer_blocks.0.attn1", + "output_blocks.8.1.transformer_blocks.0.attn1", + ], + 2: [ + # SD 1.5 U-Net (diffusers) + "down_blocks.2.attentions.0.transformer_blocks.0.attn1", + "down_blocks.2.attentions.1.transformer_blocks.0.attn1", + "up_blocks.1.attentions.0.transformer_blocks.0.attn1", + "up_blocks.1.attentions.1.transformer_blocks.0.attn1", + "up_blocks.1.attentions.2.transformer_blocks.0.attn1", + # SD 1.5 U-Net (ldm) + "input_blocks.7.1.transformer_blocks.0.attn1", + "input_blocks.8.1.transformer_blocks.0.attn1", + "output_blocks.3.1.transformer_blocks.0.attn1", + "output_blocks.4.1.transformer_blocks.0.attn1", + "output_blocks.5.1.transformer_blocks.0.attn1", + ], + 3: [ + # SD 1.5 U-Net (diffusers) + "mid_block.attentions.0.transformer_blocks.0.attn1", + # SD 1.5 U-Net (ldm) + "middle_block.1.transformer_blocks.0.attn1", + ], +} +# XL layers, thanks for GitHub@gel-crabs for the help +DEPTH_LAYERS_XL = { + 0: [ + # SD 1.5 U-Net (diffusers) + "down_blocks.0.attentions.0.transformer_blocks.0.attn1", + "down_blocks.0.attentions.1.transformer_blocks.0.attn1", + "up_blocks.3.attentions.0.transformer_blocks.0.attn1", + "up_blocks.3.attentions.1.transformer_blocks.0.attn1", + "up_blocks.3.attentions.2.transformer_blocks.0.attn1", + # SD 1.5 U-Net (ldm) + "input_blocks.4.1.transformer_blocks.0.attn1", + "input_blocks.5.1.transformer_blocks.0.attn1", + "output_blocks.3.1.transformer_blocks.0.attn1", + "output_blocks.4.1.transformer_blocks.0.attn1", + "output_blocks.5.1.transformer_blocks.0.attn1", + # SD 1.5 VAE + "decoder.mid_block.attentions.0", + "decoder.mid.attn_1", + ], + 1: [ + # SD 1.5 U-Net (diffusers) + #"down_blocks.1.attentions.0.transformer_blocks.0.attn1", + #"down_blocks.1.attentions.1.transformer_blocks.0.attn1", + #"up_blocks.2.attentions.0.transformer_blocks.0.attn1", + #"up_blocks.2.attentions.1.transformer_blocks.0.attn1", + #"up_blocks.2.attentions.2.transformer_blocks.0.attn1", + # SD 1.5 U-Net (ldm) + "input_blocks.4.1.transformer_blocks.1.attn1", + "input_blocks.5.1.transformer_blocks.1.attn1", + "output_blocks.3.1.transformer_blocks.1.attn1", + "output_blocks.4.1.transformer_blocks.1.attn1", + "output_blocks.5.1.transformer_blocks.1.attn1", + "input_blocks.7.1.transformer_blocks.0.attn1", + "input_blocks.8.1.transformer_blocks.0.attn1", + "output_blocks.0.1.transformer_blocks.0.attn1", + "output_blocks.1.1.transformer_blocks.0.attn1", + "output_blocks.2.1.transformer_blocks.0.attn1", + "input_blocks.7.1.transformer_blocks.1.attn1", + "input_blocks.8.1.transformer_blocks.1.attn1", + "output_blocks.0.1.transformer_blocks.1.attn1", + "output_blocks.1.1.transformer_blocks.1.attn1", + "output_blocks.2.1.transformer_blocks.1.attn1", + "input_blocks.7.1.transformer_blocks.2.attn1", + "input_blocks.8.1.transformer_blocks.2.attn1", + "output_blocks.0.1.transformer_blocks.2.attn1", + "output_blocks.1.1.transformer_blocks.2.attn1", + "output_blocks.2.1.transformer_blocks.2.attn1", + "input_blocks.7.1.transformer_blocks.3.attn1", + "input_blocks.8.1.transformer_blocks.3.attn1", + "output_blocks.0.1.transformer_blocks.3.attn1", + "output_blocks.1.1.transformer_blocks.3.attn1", + "output_blocks.2.1.transformer_blocks.3.attn1", + "input_blocks.7.1.transformer_blocks.4.attn1", + "input_blocks.8.1.transformer_blocks.4.attn1", + "output_blocks.0.1.transformer_blocks.4.attn1", + "output_blocks.1.1.transformer_blocks.4.attn1", + "output_blocks.2.1.transformer_blocks.4.attn1", + "input_blocks.7.1.transformer_blocks.5.attn1", + "input_blocks.8.1.transformer_blocks.5.attn1", + "output_blocks.0.1.transformer_blocks.5.attn1", + "output_blocks.1.1.transformer_blocks.5.attn1", + "output_blocks.2.1.transformer_blocks.5.attn1", + "input_blocks.7.1.transformer_blocks.6.attn1", + "input_blocks.8.1.transformer_blocks.6.attn1", + "output_blocks.0.1.transformer_blocks.6.attn1", + "output_blocks.1.1.transformer_blocks.6.attn1", + "output_blocks.2.1.transformer_blocks.6.attn1", + "input_blocks.7.1.transformer_blocks.7.attn1", + "input_blocks.8.1.transformer_blocks.7.attn1", + "output_blocks.0.1.transformer_blocks.7.attn1", + "output_blocks.1.1.transformer_blocks.7.attn1", + "output_blocks.2.1.transformer_blocks.7.attn1", + "input_blocks.7.1.transformer_blocks.8.attn1", + "input_blocks.8.1.transformer_blocks.8.attn1", + "output_blocks.0.1.transformer_blocks.8.attn1", + "output_blocks.1.1.transformer_blocks.8.attn1", + "output_blocks.2.1.transformer_blocks.8.attn1", + "input_blocks.7.1.transformer_blocks.9.attn1", + "input_blocks.8.1.transformer_blocks.9.attn1", + "output_blocks.0.1.transformer_blocks.9.attn1", + "output_blocks.1.1.transformer_blocks.9.attn1", + "output_blocks.2.1.transformer_blocks.9.attn1", + ], + 2: [ + # SD 1.5 U-Net (diffusers) + "mid_block.attentions.0.transformer_blocks.0.attn1", + # SD 1.5 U-Net (ldm) + "middle_block.1.transformer_blocks.0.attn1", + "middle_block.1.transformer_blocks.1.attn1", + "middle_block.1.transformer_blocks.2.attn1", + "middle_block.1.transformer_blocks.3.attn1", + "middle_block.1.transformer_blocks.4.attn1", + "middle_block.1.transformer_blocks.5.attn1", + "middle_block.1.transformer_blocks.6.attn1", + "middle_block.1.transformer_blocks.7.attn1", + "middle_block.1.transformer_blocks.8.attn1", + "middle_block.1.transformer_blocks.9.attn1", + ], + 3 : [] # TODO - separate layers for SD-XL +} + + +RNG_INSTANCE = random.Random() + +@cache +def get_divisors(value: int, min_value: int, /, max_options: int = 1) -> list[int]: + """ + Returns divisors of value that + x * min_value <= value + in big -> small order, amount of divisors is limited by max_options + """ + max_options = max(1, max_options) # at least 1 option should be returned + min_value = min(min_value, value) + divisors = [i for i in range(min_value, value + 1) if value % i == 0] # divisors in small -> big order + ns = [value // i for i in divisors[:max_options]] # has at least 1 element # big -> small order + return ns + + +def random_divisor(value: int, min_value: int, /, max_options: int = 1) -> int: + """ + Returns a random divisor of value that + x * min_value <= value + if max_options is 1, the behavior is deterministic + """ + ns = get_divisors(value, min_value, max_options=max_options) # get cached divisors + idx = RNG_INSTANCE.randint(0, len(ns) - 1) + + return ns[idx] + + +def set_hypertile_seed(seed: int) -> None: + RNG_INSTANCE.seed(seed) + + +@cache +def largest_tile_size_available(width: int, height: int) -> int: + """ + Calculates the largest tile size available for a given width and height + Tile size is always a power of 2 + """ + gcd = math.gcd(width, height) + largest_tile_size_available = 1 + while gcd % (largest_tile_size_available * 2) == 0: + largest_tile_size_available *= 2 + return largest_tile_size_available + + +def iterative_closest_divisors(hw:int, aspect_ratio:float) -> tuple[int, int]: + """ + Finds h and w such that h*w = hw and h/w = aspect_ratio + We check all possible divisors of hw and return the closest to the aspect ratio + """ + divisors = [i for i in range(2, hw + 1) if hw % i == 0] # all divisors of hw + pairs = [(i, hw // i) for i in divisors] # all pairs of divisors of hw + ratios = [w/h for h, w in pairs] # all ratios of pairs of divisors of hw + closest_ratio = min(ratios, key=lambda x: abs(x - aspect_ratio)) # closest ratio to aspect_ratio + closest_pair = pairs[ratios.index(closest_ratio)] # closest pair of divisors to aspect_ratio + return closest_pair + + +@cache +def find_hw_candidates(hw:int, aspect_ratio:float) -> tuple[int, int]: + """ + Finds h and w such that h*w = hw and h/w = aspect_ratio + """ + h, w = round(math.sqrt(hw * aspect_ratio)), round(math.sqrt(hw / aspect_ratio)) + # find h and w such that h*w = hw and h/w = aspect_ratio + if h * w != hw: + w_candidate = hw / h + # check if w is an integer + if not w_candidate.is_integer(): + h_candidate = hw / w + # check if h is an integer + if not h_candidate.is_integer(): + return iterative_closest_divisors(hw, aspect_ratio) + else: + h = int(h_candidate) + else: + w = int(w_candidate) + return h, w + + +def self_attn_forward(params: HypertileParams, scale_depth=True) -> Callable: + + @wraps(params.forward) + def wrapper(*args, **kwargs): + if not params.enabled: + return params.forward(*args, **kwargs) + + latent_tile_size = max(128, params.tile_size) // 8 + x = args[0] + + # VAE + if x.ndim == 4: + b, c, h, w = x.shape + + nh = random_divisor(h, latent_tile_size, params.swap_size) + nw = random_divisor(w, latent_tile_size, params.swap_size) + + if nh * nw > 1: + x = rearrange(x, "b c (nh h) (nw w) -> (b nh nw) c h w", nh=nh, nw=nw) # split into nh * nw tiles + + out = params.forward(x, *args[1:], **kwargs) + + if nh * nw > 1: + out = rearrange(out, "(b nh nw) c h w -> b c (nh h) (nw w)", nh=nh, nw=nw) + + # U-Net + else: + hw: int = x.size(1) + h, w = find_hw_candidates(hw, params.aspect_ratio) + assert h * w == hw, f"Invalid aspect ratio {params.aspect_ratio} for input of shape {x.shape}, hw={hw}, h={h}, w={w}" + + factor = 2 ** params.depth if scale_depth else 1 + nh = random_divisor(h, latent_tile_size * factor, params.swap_size) + nw = random_divisor(w, latent_tile_size * factor, params.swap_size) + + if nh * nw > 1: + x = rearrange(x, "b (nh h nw w) c -> (b nh nw) (h w) c", h=h // nh, w=w // nw, nh=nh, nw=nw) + + out = params.forward(x, *args[1:], **kwargs) + + if nh * nw > 1: + out = rearrange(out, "(b nh nw) hw c -> b nh nw hw c", nh=nh, nw=nw) + out = rearrange(out, "b nh nw (h w) c -> b (nh h nw w) c", h=h // nh, w=w // nw) + + return out + + return wrapper + + +def hypertile_hook_model(model: nn.Module, width, height, *, enable=False, tile_size_max=128, swap_size=1, max_depth=3, is_sdxl=False): + hypertile_layers = getattr(model, "__webui_hypertile_layers", None) + if hypertile_layers is None: + if not enable: + return + + hypertile_layers = {} + layers = DEPTH_LAYERS_XL if is_sdxl else DEPTH_LAYERS + + for depth in range(4): + for layer_name, module in model.named_modules(): + if any(layer_name.endswith(try_name) for try_name in layers[depth]): + params = HypertileParams() + module.__webui_hypertile_params = params + params.forward = module.forward + params.depth = depth + params.layer_name = layer_name + module.forward = self_attn_forward(params) + + hypertile_layers[layer_name] = 1 + + model.__webui_hypertile_layers = hypertile_layers + + aspect_ratio = width / height + tile_size = min(largest_tile_size_available(width, height), tile_size_max) + + for layer_name, module in model.named_modules(): + if layer_name in hypertile_layers: + params = module.__webui_hypertile_params + + params.tile_size = tile_size + params.swap_size = swap_size + params.aspect_ratio = aspect_ratio + params.enabled = enable and params.depth <= max_depth diff --git a/extensions-builtin/hypertile/scripts/hypertile_script.py b/extensions-builtin/hypertile/scripts/hypertile_script.py new file mode 100644 index 00000000..395d584b --- /dev/null +++ b/extensions-builtin/hypertile/scripts/hypertile_script.py @@ -0,0 +1,109 @@ +import hypertile
+from modules import scripts, script_callbacks, shared
+from scripts.hypertile_xyz import add_axis_options
+
+
+class ScriptHypertile(scripts.Script):
+ name = "Hypertile"
+
+ def title(self):
+ return self.name
+
+ def show(self, is_img2img):
+ return scripts.AlwaysVisible
+
+ def process(self, p, *args):
+ hypertile.set_hypertile_seed(p.all_seeds[0])
+
+ configure_hypertile(p.width, p.height, enable_unet=shared.opts.hypertile_enable_unet)
+
+ self.add_infotext(p)
+
+ def before_hr(self, p, *args):
+
+ enable = shared.opts.hypertile_enable_unet_secondpass or shared.opts.hypertile_enable_unet
+
+ # exclusive hypertile seed for the second pass
+ if enable:
+ hypertile.set_hypertile_seed(p.all_seeds[0])
+
+ configure_hypertile(p.hr_upscale_to_x, p.hr_upscale_to_y, enable_unet=enable)
+
+ if enable and not shared.opts.hypertile_enable_unet:
+ p.extra_generation_params["Hypertile U-Net second pass"] = True
+
+ self.add_infotext(p, add_unet_params=True)
+
+ def add_infotext(self, p, add_unet_params=False):
+ def option(name):
+ value = getattr(shared.opts, name)
+ default_value = shared.opts.get_default(name)
+ return None if value == default_value else value
+
+ if shared.opts.hypertile_enable_unet:
+ p.extra_generation_params["Hypertile U-Net"] = True
+
+ if shared.opts.hypertile_enable_unet or add_unet_params:
+ p.extra_generation_params["Hypertile U-Net max depth"] = option('hypertile_max_depth_unet')
+ p.extra_generation_params["Hypertile U-Net max tile size"] = option('hypertile_max_tile_unet')
+ p.extra_generation_params["Hypertile U-Net swap size"] = option('hypertile_swap_size_unet')
+
+ if shared.opts.hypertile_enable_vae:
+ p.extra_generation_params["Hypertile VAE"] = True
+ p.extra_generation_params["Hypertile VAE max depth"] = option('hypertile_max_depth_vae')
+ p.extra_generation_params["Hypertile VAE max tile size"] = option('hypertile_max_tile_vae')
+ p.extra_generation_params["Hypertile VAE swap size"] = option('hypertile_swap_size_vae')
+
+
+def configure_hypertile(width, height, enable_unet=True):
+ hypertile.hypertile_hook_model(
+ shared.sd_model.first_stage_model,
+ width,
+ height,
+ swap_size=shared.opts.hypertile_swap_size_vae,
+ max_depth=shared.opts.hypertile_max_depth_vae,
+ tile_size_max=shared.opts.hypertile_max_tile_vae,
+ enable=shared.opts.hypertile_enable_vae,
+ )
+
+ hypertile.hypertile_hook_model(
+ shared.sd_model.model,
+ width,
+ height,
+ swap_size=shared.opts.hypertile_swap_size_unet,
+ max_depth=shared.opts.hypertile_max_depth_unet,
+ tile_size_max=shared.opts.hypertile_max_tile_unet,
+ enable=enable_unet,
+ is_sdxl=shared.sd_model.is_sdxl
+ )
+
+
+def on_ui_settings():
+ import gradio as gr
+
+ options = {
+ "hypertile_explanation": shared.OptionHTML("""
+ <a href='https://github.com/tfernd/HyperTile'>Hypertile</a> optimizes the self-attention layer within U-Net and VAE models,
+ resulting in a reduction in computation time ranging from 1 to 4 times. The larger the generated image is, the greater the
+ benefit.
+ """),
+
+ "hypertile_enable_unet": shared.OptionInfo(False, "Enable Hypertile U-Net", infotext="Hypertile U-Net").info("enables hypertile for all modes, including hires fix second pass; noticeable change in details of the generated picture"),
+ "hypertile_enable_unet_secondpass": shared.OptionInfo(False, "Enable Hypertile U-Net for hires fix second pass", infotext="Hypertile U-Net second pass").info("enables hypertile just for hires fix second pass - regardless of whether the above setting is enabled"),
+ "hypertile_max_depth_unet": shared.OptionInfo(3, "Hypertile U-Net max depth", gr.Slider, {"minimum": 0, "maximum": 3, "step": 1}, infotext="Hypertile U-Net max depth").info("larger = more neural network layers affected; minor effect on performance"),
+ "hypertile_max_tile_unet": shared.OptionInfo(256, "Hypertile U-Net max tile size", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}, infotext="Hypertile U-Net max tile size").info("larger = worse performance"),
+ "hypertile_swap_size_unet": shared.OptionInfo(3, "Hypertile U-Net swap size", gr.Slider, {"minimum": 0, "maximum": 64, "step": 1}, infotext="Hypertile U-Net swap size"),
+
+ "hypertile_enable_vae": shared.OptionInfo(False, "Enable Hypertile VAE", infotext="Hypertile VAE").info("minimal change in the generated picture"),
+ "hypertile_max_depth_vae": shared.OptionInfo(3, "Hypertile VAE max depth", gr.Slider, {"minimum": 0, "maximum": 3, "step": 1}, infotext="Hypertile VAE max depth"),
+ "hypertile_max_tile_vae": shared.OptionInfo(128, "Hypertile VAE max tile size", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}, infotext="Hypertile VAE max tile size"),
+ "hypertile_swap_size_vae": shared.OptionInfo(3, "Hypertile VAE swap size ", gr.Slider, {"minimum": 0, "maximum": 64, "step": 1}, infotext="Hypertile VAE swap size"),
+ }
+
+ for name, opt in options.items():
+ opt.section = ('hypertile', "Hypertile")
+ shared.opts.add_option(name, opt)
+
+
+script_callbacks.on_ui_settings(on_ui_settings)
+script_callbacks.on_before_ui(add_axis_options)
diff --git a/extensions-builtin/hypertile/scripts/hypertile_xyz.py b/extensions-builtin/hypertile/scripts/hypertile_xyz.py new file mode 100644 index 00000000..9e96ae3c --- /dev/null +++ b/extensions-builtin/hypertile/scripts/hypertile_xyz.py @@ -0,0 +1,51 @@ +from modules import scripts +from modules.shared import opts + +xyz_grid = [x for x in scripts.scripts_data if x.script_class.__module__ == "xyz_grid.py"][0].module + +def int_applier(value_name:str, min_range:int = -1, max_range:int = -1): + """ + Returns a function that applies the given value to the given value_name in opts.data. + """ + def validate(value_name:str, value:str): + value = int(value) + # validate value + if not min_range == -1: + assert value >= min_range, f"Value {value} for {value_name} must be greater than or equal to {min_range}" + if not max_range == -1: + assert value <= max_range, f"Value {value} for {value_name} must be less than or equal to {max_range}" + def apply_int(p, x, xs): + validate(value_name, x) + opts.data[value_name] = int(x) + return apply_int + +def bool_applier(value_name:str): + """ + Returns a function that applies the given value to the given value_name in opts.data. + """ + def validate(value_name:str, value:str): + assert value.lower() in ["true", "false"], f"Value {value} for {value_name} must be either true or false" + def apply_bool(p, x, xs): + validate(value_name, x) + value_boolean = x.lower() == "true" + opts.data[value_name] = value_boolean + return apply_bool + +def add_axis_options(): + extra_axis_options = [ + xyz_grid.AxisOption("[Hypertile] Unet First pass Enabled", str, bool_applier("hypertile_enable_unet"), choices=xyz_grid.boolean_choice(reverse=True)), + xyz_grid.AxisOption("[Hypertile] Unet Second pass Enabled", str, bool_applier("hypertile_enable_unet_secondpass"), choices=xyz_grid.boolean_choice(reverse=True)), + xyz_grid.AxisOption("[Hypertile] Unet Max Depth", int, int_applier("hypertile_max_depth_unet", 0, 3), choices=lambda: [str(x) for x in range(4)]), + xyz_grid.AxisOption("[Hypertile] Unet Max Tile Size", int, int_applier("hypertile_max_tile_unet", 0, 512)), + xyz_grid.AxisOption("[Hypertile] Unet Swap Size", int, int_applier("hypertile_swap_size_unet", 0, 64)), + xyz_grid.AxisOption("[Hypertile] VAE Enabled", str, bool_applier("hypertile_enable_vae"), choices=xyz_grid.boolean_choice(reverse=True)), + xyz_grid.AxisOption("[Hypertile] VAE Max Depth", int, int_applier("hypertile_max_depth_vae", 0, 3), choices=lambda: [str(x) for x in range(4)]), + xyz_grid.AxisOption("[Hypertile] VAE Max Tile Size", int, int_applier("hypertile_max_tile_vae", 0, 512)), + xyz_grid.AxisOption("[Hypertile] VAE Swap Size", int, int_applier("hypertile_swap_size_vae", 0, 64)), + ] + set_a = {opt.label for opt in xyz_grid.axis_options} + set_b = {opt.label for opt in extra_axis_options} + if set_a.intersection(set_b): + return + + xyz_grid.axis_options.extend(extra_axis_options) diff --git a/extensions-builtin/mobile/javascript/mobile.js b/extensions-builtin/mobile/javascript/mobile.js index 652f07ac..bff1aced 100644 --- a/extensions-builtin/mobile/javascript/mobile.js +++ b/extensions-builtin/mobile/javascript/mobile.js @@ -12,6 +12,8 @@ function isMobile() { } function reportWindowSize() { + if (gradioApp().querySelector('.toprow-compact-tools')) return; // not applicable for compact prompt layout + var currentlyMobile = isMobile(); if (currentlyMobile == isSetupForMobile) return; isSetupForMobile = currentlyMobile; |