diff options
author | Zac Liu <liuguang@baai.ac.cn> | 2022-11-30 03:14:04 +0000 |
---|---|---|
committer | GitHub <noreply@github.com> | 2022-11-30 03:14:04 +0000 |
commit | a39a57cb1f5964d9af2b541f7b352576adeeac0f (patch) | |
tree | ebae98ea40ecc5b34497424bee19310e9fac4068 /ldm/modules/encoders/modules.py | |
parent | 4b3c5bc24bffdf429c463a465763b3077fe55eb8 (diff) | |
parent | 0831ab476c626eb796b609acf8771177692bfab7 (diff) | |
download | stable-diffusion-webui-gfx803-a39a57cb1f5964d9af2b541f7b352576adeeac0f.tar.gz stable-diffusion-webui-gfx803-a39a57cb1f5964d9af2b541f7b352576adeeac0f.tar.bz2 stable-diffusion-webui-gfx803-a39a57cb1f5964d9af2b541f7b352576adeeac0f.zip |
Merge pull request #1 from 920232796/master
Add AltDiffusion
Diffstat (limited to 'ldm/modules/encoders/modules.py')
-rw-r--r-- | ldm/modules/encoders/modules.py | 234 |
1 files changed, 234 insertions, 0 deletions
diff --git a/ldm/modules/encoders/modules.py b/ldm/modules/encoders/modules.py new file mode 100644 index 00000000..ededbe43 --- /dev/null +++ b/ldm/modules/encoders/modules.py @@ -0,0 +1,234 @@ +import torch +import torch.nn as nn +from functools import partial +import clip +from einops import rearrange, repeat +from transformers import CLIPTokenizer, CLIPTextModel +import kornia + +from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test + + +class AbstractEncoder(nn.Module): + def __init__(self): + super().__init__() + + def encode(self, *args, **kwargs): + raise NotImplementedError + + + +class ClassEmbedder(nn.Module): + def __init__(self, embed_dim, n_classes=1000, key='class'): + super().__init__() + self.key = key + self.embedding = nn.Embedding(n_classes, embed_dim) + + def forward(self, batch, key=None): + if key is None: + key = self.key + # this is for use in crossattn + c = batch[key][:, None] + c = self.embedding(c) + return c + + +class TransformerEmbedder(AbstractEncoder): + """Some transformer encoder layers""" + def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"): + super().__init__() + self.device = device + self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len, + attn_layers=Encoder(dim=n_embed, depth=n_layer)) + + def forward(self, tokens): + tokens = tokens.to(self.device) # meh + z = self.transformer(tokens, return_embeddings=True) + return z + + def encode(self, x): + return self(x) + + +class BERTTokenizer(AbstractEncoder): + """ Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)""" + def __init__(self, device="cuda", vq_interface=True, max_length=77): + super().__init__() + from transformers import BertTokenizerFast # TODO: add to reuquirements + self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased") + self.device = device + self.vq_interface = vq_interface + self.max_length = max_length + + def forward(self, text): + batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, + return_overflowing_tokens=False, padding="max_length", return_tensors="pt") + tokens = batch_encoding["input_ids"].to(self.device) + return tokens + + @torch.no_grad() + def encode(self, text): + tokens = self(text) + if not self.vq_interface: + return tokens + return None, None, [None, None, tokens] + + def decode(self, text): + return text + + +class BERTEmbedder(AbstractEncoder): + """Uses the BERT tokenizr model and add some transformer encoder layers""" + def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77, + device="cuda",use_tokenizer=True, embedding_dropout=0.0): + super().__init__() + self.use_tknz_fn = use_tokenizer + if self.use_tknz_fn: + self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len) + self.device = device + self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len, + attn_layers=Encoder(dim=n_embed, depth=n_layer), + emb_dropout=embedding_dropout) + + def forward(self, text): + if self.use_tknz_fn: + tokens = self.tknz_fn(text)#.to(self.device) + else: + tokens = text + z = self.transformer(tokens, return_embeddings=True) + return z + + def encode(self, text): + # output of length 77 + return self(text) + + +class SpatialRescaler(nn.Module): + def __init__(self, + n_stages=1, + method='bilinear', + multiplier=0.5, + in_channels=3, + out_channels=None, + bias=False): + super().__init__() + self.n_stages = n_stages + assert self.n_stages >= 0 + assert method in ['nearest','linear','bilinear','trilinear','bicubic','area'] + self.multiplier = multiplier + self.interpolator = partial(torch.nn.functional.interpolate, mode=method) + self.remap_output = out_channels is not None + if self.remap_output: + print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.') + self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias) + + def forward(self,x): + for stage in range(self.n_stages): + x = self.interpolator(x, scale_factor=self.multiplier) + + + if self.remap_output: + x = self.channel_mapper(x) + return x + + def encode(self, x): + return self(x) + +class FrozenCLIPEmbedder(AbstractEncoder): + """Uses the CLIP transformer encoder for text (from Hugging Face)""" + def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77): + super().__init__() + self.tokenizer = CLIPTokenizer.from_pretrained(version) + self.transformer = CLIPTextModel.from_pretrained(version) + self.device = device + self.max_length = max_length + self.freeze() + + def freeze(self): + self.transformer = self.transformer.eval() + for param in self.parameters(): + param.requires_grad = False + + def forward(self, text): + batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, + return_overflowing_tokens=False, padding="max_length", return_tensors="pt") + tokens = batch_encoding["input_ids"].to(self.device) + outputs = self.transformer(input_ids=tokens) + + z = outputs.last_hidden_state + return z + + def encode(self, text): + return self(text) + + +class FrozenCLIPTextEmbedder(nn.Module): + """ + Uses the CLIP transformer encoder for text. + """ + def __init__(self, version='ViT-L/14', device="cuda", max_length=77, n_repeat=1, normalize=True): + super().__init__() + self.model, _ = clip.load(version, jit=False, device="cpu") + self.device = device + self.max_length = max_length + self.n_repeat = n_repeat + self.normalize = normalize + + def freeze(self): + self.model = self.model.eval() + for param in self.parameters(): + param.requires_grad = False + + def forward(self, text): + tokens = clip.tokenize(text).to(self.device) + z = self.model.encode_text(tokens) + if self.normalize: + z = z / torch.linalg.norm(z, dim=1, keepdim=True) + return z + + def encode(self, text): + z = self(text) + if z.ndim==2: + z = z[:, None, :] + z = repeat(z, 'b 1 d -> b k d', k=self.n_repeat) + return z + + +class FrozenClipImageEmbedder(nn.Module): + """ + Uses the CLIP image encoder. + """ + def __init__( + self, + model, + jit=False, + device='cuda' if torch.cuda.is_available() else 'cpu', + antialias=False, + ): + super().__init__() + self.model, _ = clip.load(name=model, device=device, jit=jit) + + self.antialias = antialias + + self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False) + self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False) + + def preprocess(self, x): + # normalize to [0,1] + x = kornia.geometry.resize(x, (224, 224), + interpolation='bicubic',align_corners=True, + antialias=self.antialias) + x = (x + 1.) / 2. + # renormalize according to clip + x = kornia.enhance.normalize(x, self.mean, self.std) + return x + + def forward(self, x): + # x is assumed to be in range [-1,1] + return self.model.encode_image(self.preprocess(x)) + + +if __name__ == "__main__": + from ldm.util import count_params + model = FrozenCLIPEmbedder() + count_params(model, verbose=True)
\ No newline at end of file |