aboutsummaryrefslogtreecommitdiffstats
path: root/modules/api/models.py
diff options
context:
space:
mode:
authorunknown <mcgpapu@gmail.com>2023-01-28 09:40:51 +0000
committerunknown <mcgpapu@gmail.com>2023-01-28 09:40:51 +0000
commite79b7db4b47a33889551b9266ee3277879d4f560 (patch)
tree1c1944204e58e254bfea22ae44edccdbb54e6b3c /modules/api/models.py
parentb921a52071cf2a5e551c31a6073af6eaebbf7847 (diff)
parente8a41df49fadd2cf9f23b1f02d75a4947bec5646 (diff)
downloadstable-diffusion-webui-gfx803-e79b7db4b47a33889551b9266ee3277879d4f560.tar.gz
stable-diffusion-webui-gfx803-e79b7db4b47a33889551b9266ee3277879d4f560.tar.bz2
stable-diffusion-webui-gfx803-e79b7db4b47a33889551b9266ee3277879d4f560.zip
Merge branch 'master' of github.com:AUTOMATIC1111/stable-diffusion-webui into gamepad
Diffstat (limited to 'modules/api/models.py')
-rw-r--r--modules/api/models.py30
1 files changed, 24 insertions, 6 deletions
diff --git a/modules/api/models.py b/modules/api/models.py
index c446ce7a..cba43d3b 100644
--- a/modules/api/models.py
+++ b/modules/api/models.py
@@ -100,13 +100,13 @@ class PydanticModelGenerator:
StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator(
"StableDiffusionProcessingTxt2Img",
StableDiffusionProcessingTxt2Img,
- [{"key": "sampler_index", "type": str, "default": "Euler"}]
+ [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}]
).generate_model()
StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator(
"StableDiffusionProcessingImg2Img",
StableDiffusionProcessingImg2Img,
- [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}]
+ [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}]
).generate_model()
class TextToImageResponse(BaseModel):
@@ -125,7 +125,7 @@ class ExtrasBaseRequest(BaseModel):
gfpgan_visibility: float = Field(default=0, title="GFPGAN Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of GFPGAN, values should be between 0 and 1.")
codeformer_visibility: float = Field(default=0, title="CodeFormer Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of CodeFormer, values should be between 0 and 1.")
codeformer_weight: float = Field(default=0, title="CodeFormer Weight", ge=0, le=1, allow_inf_nan=False, description="Sets the weight of CodeFormer, values should be between 0 and 1.")
- upscaling_resize: float = Field(default=2, title="Upscaling Factor", ge=1, le=4, description="By how much to upscale the image, only used when resize_mode=0.")
+ upscaling_resize: float = Field(default=2, title="Upscaling Factor", ge=1, le=8, description="By how much to upscale the image, only used when resize_mode=0.")
upscaling_resize_w: int = Field(default=512, title="Target Width", ge=1, description="Target width for the upscaler to hit. Only used when resize_mode=1.")
upscaling_resize_h: int = Field(default=512, title="Target Height", ge=1, description="Target height for the upscaler to hit. Only used when resize_mode=1.")
upscaling_crop: bool = Field(default=True, title="Crop to fit", description="Should the upscaler crop the image to fit in the chosen size?")
@@ -157,7 +157,8 @@ class PNGInfoRequest(BaseModel):
image: str = Field(title="Image", description="The base64 encoded PNG image")
class PNGInfoResponse(BaseModel):
- info: str = Field(title="Image info", description="A string with all the info the image had")
+ info: str = Field(title="Image info", description="A string with the parameters used to generate the image")
+ items: dict = Field(title="Items", description="An object containing all the info the image had")
class ProgressRequest(BaseModel):
skip_current_image: bool = Field(default=False, title="Skip current image", description="Skip current image serialization")
@@ -167,6 +168,7 @@ class ProgressResponse(BaseModel):
eta_relative: float = Field(title="ETA in secs")
state: dict = Field(title="State", description="The current state snapshot")
current_image: str = Field(default=None, title="Current image", description="The current image in base64 format. opts.show_progress_every_n_steps is required for this to work.")
+ textinfo: str = Field(default=None, title="Info text", description="Info text used by WebUI.")
class InterrogateRequest(BaseModel):
image: str = Field(default="", title="Image", description="Image to work on, must be a Base64 string containing the image's data.")
@@ -218,13 +220,15 @@ class UpscalerItem(BaseModel):
model_name: Optional[str] = Field(title="Model Name")
model_path: Optional[str] = Field(title="Path")
model_url: Optional[str] = Field(title="URL")
+ scale: Optional[float] = Field(title="Scale")
class SDModelItem(BaseModel):
title: str = Field(title="Title")
model_name: str = Field(title="Model Name")
- hash: str = Field(title="Hash")
+ hash: Optional[str] = Field(title="Short hash")
+ sha256: Optional[str] = Field(title="sha256 hash")
filename: str = Field(title="Filename")
- config: str = Field(title="Config file")
+ config: Optional[str] = Field(title="Config file")
class HypernetworkItem(BaseModel):
name: str = Field(title="Name")
@@ -249,3 +253,17 @@ class ArtistItem(BaseModel):
score: float = Field(title="Score")
category: str = Field(title="Category")
+class EmbeddingItem(BaseModel):
+ step: Optional[int] = Field(title="Step", description="The number of steps that were used to train this embedding, if available")
+ sd_checkpoint: Optional[str] = Field(title="SD Checkpoint", description="The hash of the checkpoint this embedding was trained on, if available")
+ sd_checkpoint_name: Optional[str] = Field(title="SD Checkpoint Name", description="The name of the checkpoint this embedding was trained on, if available. Note that this is the name that was used by the trainer; for a stable identifier, use `sd_checkpoint` instead")
+ shape: int = Field(title="Shape", description="The length of each individual vector in the embedding")
+ vectors: int = Field(title="Vectors", description="The number of vectors in the embedding")
+
+class EmbeddingsResponse(BaseModel):
+ loaded: Dict[str, EmbeddingItem] = Field(title="Loaded", description="Embeddings loaded for the current model")
+ skipped: Dict[str, EmbeddingItem] = Field(title="Skipped", description="Embeddings skipped for the current model (likely due to architecture incompatibility)")
+
+class MemoryResponse(BaseModel):
+ ram: dict = Field(title="RAM", description="System memory stats")
+ cuda: dict = Field(title="CUDA", description="nVidia CUDA memory stats")