diff options
author | unknown <mcgpapu@gmail.com> | 2023-01-28 09:40:51 +0000 |
---|---|---|
committer | unknown <mcgpapu@gmail.com> | 2023-01-28 09:40:51 +0000 |
commit | e79b7db4b47a33889551b9266ee3277879d4f560 (patch) | |
tree | 1c1944204e58e254bfea22ae44edccdbb54e6b3c /modules/api/models.py | |
parent | b921a52071cf2a5e551c31a6073af6eaebbf7847 (diff) | |
parent | e8a41df49fadd2cf9f23b1f02d75a4947bec5646 (diff) | |
download | stable-diffusion-webui-gfx803-e79b7db4b47a33889551b9266ee3277879d4f560.tar.gz stable-diffusion-webui-gfx803-e79b7db4b47a33889551b9266ee3277879d4f560.tar.bz2 stable-diffusion-webui-gfx803-e79b7db4b47a33889551b9266ee3277879d4f560.zip |
Merge branch 'master' of github.com:AUTOMATIC1111/stable-diffusion-webui into gamepad
Diffstat (limited to 'modules/api/models.py')
-rw-r--r-- | modules/api/models.py | 30 |
1 files changed, 24 insertions, 6 deletions
diff --git a/modules/api/models.py b/modules/api/models.py index c446ce7a..cba43d3b 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -100,13 +100,13 @@ class PydanticModelGenerator: StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator( "StableDiffusionProcessingTxt2Img", StableDiffusionProcessingTxt2Img, - [{"key": "sampler_index", "type": str, "default": "Euler"}] + [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}] ).generate_model() StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator( "StableDiffusionProcessingImg2Img", StableDiffusionProcessingImg2Img, - [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}] + [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}] ).generate_model() class TextToImageResponse(BaseModel): @@ -125,7 +125,7 @@ class ExtrasBaseRequest(BaseModel): gfpgan_visibility: float = Field(default=0, title="GFPGAN Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of GFPGAN, values should be between 0 and 1.") codeformer_visibility: float = Field(default=0, title="CodeFormer Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of CodeFormer, values should be between 0 and 1.") codeformer_weight: float = Field(default=0, title="CodeFormer Weight", ge=0, le=1, allow_inf_nan=False, description="Sets the weight of CodeFormer, values should be between 0 and 1.") - upscaling_resize: float = Field(default=2, title="Upscaling Factor", ge=1, le=4, description="By how much to upscale the image, only used when resize_mode=0.") + upscaling_resize: float = Field(default=2, title="Upscaling Factor", ge=1, le=8, description="By how much to upscale the image, only used when resize_mode=0.") upscaling_resize_w: int = Field(default=512, title="Target Width", ge=1, description="Target width for the upscaler to hit. Only used when resize_mode=1.") upscaling_resize_h: int = Field(default=512, title="Target Height", ge=1, description="Target height for the upscaler to hit. Only used when resize_mode=1.") upscaling_crop: bool = Field(default=True, title="Crop to fit", description="Should the upscaler crop the image to fit in the chosen size?") @@ -157,7 +157,8 @@ class PNGInfoRequest(BaseModel): image: str = Field(title="Image", description="The base64 encoded PNG image") class PNGInfoResponse(BaseModel): - info: str = Field(title="Image info", description="A string with all the info the image had") + info: str = Field(title="Image info", description="A string with the parameters used to generate the image") + items: dict = Field(title="Items", description="An object containing all the info the image had") class ProgressRequest(BaseModel): skip_current_image: bool = Field(default=False, title="Skip current image", description="Skip current image serialization") @@ -167,6 +168,7 @@ class ProgressResponse(BaseModel): eta_relative: float = Field(title="ETA in secs") state: dict = Field(title="State", description="The current state snapshot") current_image: str = Field(default=None, title="Current image", description="The current image in base64 format. opts.show_progress_every_n_steps is required for this to work.") + textinfo: str = Field(default=None, title="Info text", description="Info text used by WebUI.") class InterrogateRequest(BaseModel): image: str = Field(default="", title="Image", description="Image to work on, must be a Base64 string containing the image's data.") @@ -218,13 +220,15 @@ class UpscalerItem(BaseModel): model_name: Optional[str] = Field(title="Model Name") model_path: Optional[str] = Field(title="Path") model_url: Optional[str] = Field(title="URL") + scale: Optional[float] = Field(title="Scale") class SDModelItem(BaseModel): title: str = Field(title="Title") model_name: str = Field(title="Model Name") - hash: str = Field(title="Hash") + hash: Optional[str] = Field(title="Short hash") + sha256: Optional[str] = Field(title="sha256 hash") filename: str = Field(title="Filename") - config: str = Field(title="Config file") + config: Optional[str] = Field(title="Config file") class HypernetworkItem(BaseModel): name: str = Field(title="Name") @@ -249,3 +253,17 @@ class ArtistItem(BaseModel): score: float = Field(title="Score") category: str = Field(title="Category") +class EmbeddingItem(BaseModel): + step: Optional[int] = Field(title="Step", description="The number of steps that were used to train this embedding, if available") + sd_checkpoint: Optional[str] = Field(title="SD Checkpoint", description="The hash of the checkpoint this embedding was trained on, if available") + sd_checkpoint_name: Optional[str] = Field(title="SD Checkpoint Name", description="The name of the checkpoint this embedding was trained on, if available. Note that this is the name that was used by the trainer; for a stable identifier, use `sd_checkpoint` instead") + shape: int = Field(title="Shape", description="The length of each individual vector in the embedding") + vectors: int = Field(title="Vectors", description="The number of vectors in the embedding") + +class EmbeddingsResponse(BaseModel): + loaded: Dict[str, EmbeddingItem] = Field(title="Loaded", description="Embeddings loaded for the current model") + skipped: Dict[str, EmbeddingItem] = Field(title="Skipped", description="Embeddings skipped for the current model (likely due to architecture incompatibility)") + +class MemoryResponse(BaseModel): + ram: dict = Field(title="RAM", description="System memory stats") + cuda: dict = Field(title="CUDA", description="nVidia CUDA memory stats") |