diff options
author | papuSpartan <30642826+papuSpartan@users.noreply.github.com> | 2022-10-31 20:08:54 +0000 |
---|---|---|
committer | GitHub <noreply@github.com> | 2022-10-31 20:08:54 +0000 |
commit | 25de9df3648f6d936ec7dbbb91c6c04bc3939a62 (patch) | |
tree | 8dbf732357d5ed094350827aff4caa7741f5a4cc /modules/api | |
parent | ce42879438bf2dbd76b5b346be656292e42ffb2b (diff) | |
parent | 5c9b3625fa03f18649e1843b5e9f2df2d4de94f9 (diff) | |
download | stable-diffusion-webui-gfx803-25de9df3648f6d936ec7dbbb91c6c04bc3939a62.tar.gz stable-diffusion-webui-gfx803-25de9df3648f6d936ec7dbbb91c6c04bc3939a62.tar.bz2 stable-diffusion-webui-gfx803-25de9df3648f6d936ec7dbbb91c6c04bc3939a62.zip |
Merge branch 'AUTOMATIC1111:master' into master
Diffstat (limited to 'modules/api')
-rw-r--r-- | modules/api/api.py | 185 | ||||
-rw-r--r-- | modules/api/models.py | 167 | ||||
-rw-r--r-- | modules/api/processing.py | 99 |
3 files changed, 316 insertions, 135 deletions
diff --git a/modules/api/api.py b/modules/api/api.py index 5b0c934e..6c06d449 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -1,22 +1,32 @@ -from modules.api.processing import StableDiffusionProcessingAPI -from modules.processing import StableDiffusionProcessingTxt2Img, process_images -from modules.sd_samplers import all_samplers -from modules.extras import run_pnginfo -import modules.shared as shared +import time import uvicorn -from fastapi import Body, APIRouter, HTTPException -from fastapi.responses import JSONResponse -from pydantic import BaseModel, Field, Json -import json -import io -import base64 +from gradio.processing_utils import encode_pil_to_base64, decode_base64_to_file, decode_base64_to_image +from fastapi import APIRouter, Depends, HTTPException +import modules.shared as shared +from modules import devices +from modules.api.models import * +from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images +from modules.sd_samplers import all_samplers +from modules.extras import run_extras, run_pnginfo + + +def upscaler_to_index(name: str): + try: + return [x.name.lower() for x in shared.sd_upscalers].index(name.lower()) + except: + raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be on of these: {' , '.join([x.name for x in sd_upscalers])}") + sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None) -class TextToImageResponse(BaseModel): - images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.") - parameters: Json - info: Json + +def setUpscalers(req: dict): + reqDict = vars(req) + reqDict['extras_upscaler_1'] = upscaler_to_index(req.upscaler_1) + reqDict['extras_upscaler_2'] = upscaler_to_index(req.upscaler_2) + reqDict.pop('upscaler_1') + reqDict.pop('upscaler_2') + return reqDict class Api: @@ -24,16 +34,21 @@ class Api: self.router = APIRouter() self.app = app self.queue_lock = queue_lock - self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"]) + self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=TextToImageResponse) + self.app.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=ImageToImageResponse) + self.app.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse) + self.app.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse) + self.app.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=PNGInfoResponse) + self.app.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=ProgressResponse) - def text2imgapi(self, txt2imgreq: StableDiffusionProcessingAPI ): + def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI): sampler_index = sampler_to_index(txt2imgreq.sampler_index) - + if sampler_index is None: - raise HTTPException(status_code=404, detail="Sampler not found") - + raise HTTPException(status_code=404, detail="Sampler not found") + populate = txt2imgreq.copy(update={ # Override __init__ params - "sd_model": shared.sd_model, + "sd_model": shared.sd_model, "sampler_index": sampler_index[0], "do_not_save_samples": True, "do_not_save_grid": True @@ -41,27 +56,125 @@ class Api: ) p = StableDiffusionProcessingTxt2Img(**vars(populate)) # Override object param + + shared.state.begin() + with self.queue_lock: processed = process_images(p) - - b64images = [] - for i in processed.images: - buffer = io.BytesIO() - i.save(buffer, format="png") - b64images.append(base64.b64encode(buffer.getvalue())) - return TextToImageResponse(images=b64images, parameters=json.dumps(vars(txt2imgreq)), info=json.dumps(processed.info)) - - + shared.state.end() + + b64images = list(map(encode_pil_to_base64, processed.images)) + + return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js()) + + def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI): + sampler_index = sampler_to_index(img2imgreq.sampler_index) + + if sampler_index is None: + raise HTTPException(status_code=404, detail="Sampler not found") + + + init_images = img2imgreq.init_images + if init_images is None: + raise HTTPException(status_code=404, detail="Init image not found") + + mask = img2imgreq.mask + if mask: + mask = decode_base64_to_image(mask) + + + populate = img2imgreq.copy(update={ # Override __init__ params + "sd_model": shared.sd_model, + "sampler_index": sampler_index[0], + "do_not_save_samples": True, + "do_not_save_grid": True, + "mask": mask + } + ) + p = StableDiffusionProcessingImg2Img(**vars(populate)) + + imgs = [] + for img in init_images: + img = decode_base64_to_image(img) + imgs = [img] * p.batch_size + + p.init_images = imgs + + shared.state.begin() + + with self.queue_lock: + processed = process_images(p) + + shared.state.end() + + b64images = list(map(encode_pil_to_base64, processed.images)) + + if (not img2imgreq.include_init_images): + img2imgreq.init_images = None + img2imgreq.mask = None + + return ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.js()) + + def extras_single_image_api(self, req: ExtrasSingleImageRequest): + reqDict = setUpscalers(req) + + reqDict['image'] = decode_base64_to_image(reqDict['image']) + + with self.queue_lock: + result = run_extras(extras_mode=0, image_folder="", input_dir="", output_dir="", **reqDict) + + return ExtrasSingleImageResponse(image=encode_pil_to_base64(result[0][0]), html_info=result[1]) + + def extras_batch_images_api(self, req: ExtrasBatchImagesRequest): + reqDict = setUpscalers(req) + + def prepareFiles(file): + file = decode_base64_to_file(file.data, file_path=file.name) + file.orig_name = file.name + return file + + reqDict['image_folder'] = list(map(prepareFiles, reqDict['imageList'])) + reqDict.pop('imageList') + + with self.queue_lock: + result = run_extras(extras_mode=1, image="", input_dir="", output_dir="", **reqDict) + + return ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1]) + + def pnginfoapi(self, req: PNGInfoRequest): + if(not req.image.strip()): + return PNGInfoResponse(info="") + + result = run_pnginfo(decode_base64_to_image(req.image.strip())) + + return PNGInfoResponse(info=result[1]) + + def progressapi(self, req: ProgressRequest = Depends()): + # copy from check_progress_call of ui.py + + if shared.state.job_count == 0: + return ProgressResponse(progress=0, eta_relative=0, state=shared.state.dict()) + + # avoid dividing zero + progress = 0.01 + + if shared.state.job_count > 0: + progress += shared.state.job_no / shared.state.job_count + if shared.state.sampling_steps > 0: + progress += 1 / shared.state.job_count * shared.state.sampling_step / shared.state.sampling_steps + + time_since_start = time.time() - shared.state.time_start + eta = (time_since_start/progress) + eta_relative = eta-time_since_start - def img2imgapi(self): - raise NotImplementedError + progress = min(progress, 1) - def extrasapi(self): - raise NotImplementedError + current_image = None + if shared.state.current_image and not req.skip_current_image: + current_image = encode_pil_to_base64(shared.state.current_image) - def pnginfoapi(self): - raise NotImplementedError + return ProgressResponse(progress=progress, eta_relative=eta_relative, state=shared.state.dict(), current_image=current_image) def launch(self, server_name, port): self.app.include_router(self.router) diff --git a/modules/api/models.py b/modules/api/models.py new file mode 100644 index 00000000..9ee42a17 --- /dev/null +++ b/modules/api/models.py @@ -0,0 +1,167 @@ +import inspect +from click import prompt +from pydantic import BaseModel, Field, create_model +from typing import Any, Optional +from typing_extensions import Literal +from inflection import underscore +from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img +from modules.shared import sd_upscalers + +API_NOT_ALLOWED = [ + "self", + "kwargs", + "sd_model", + "outpath_samples", + "outpath_grids", + "sampler_index", + "do_not_save_samples", + "do_not_save_grid", + "extra_generation_params", + "overlay_images", + "do_not_reload_embeddings", + "seed_enable_extras", + "prompt_for_display", + "sampler_noise_scheduler_override", + "ddim_discretize" +] + +class ModelDef(BaseModel): + """Assistance Class for Pydantic Dynamic Model Generation""" + + field: str + field_alias: str + field_type: Any + field_value: Any + field_exclude: bool = False + + +class PydanticModelGenerator: + """ + Takes in created classes and stubs them out in a way FastAPI/Pydantic is happy about: + source_data is a snapshot of the default values produced by the class + params are the names of the actual keys required by __init__ + """ + + def __init__( + self, + model_name: str = None, + class_instance = None, + additional_fields = None, + ): + def field_type_generator(k, v): + # field_type = str if not overrides.get(k) else overrides[k]["type"] + # print(k, v.annotation, v.default) + field_type = v.annotation + + return Optional[field_type] + + def merge_class_params(class_): + all_classes = list(filter(lambda x: x is not object, inspect.getmro(class_))) + parameters = {} + for classes in all_classes: + parameters = {**parameters, **inspect.signature(classes.__init__).parameters} + return parameters + + + self._model_name = model_name + self._class_data = merge_class_params(class_instance) + self._model_def = [ + ModelDef( + field=underscore(k), + field_alias=k, + field_type=field_type_generator(k, v), + field_value=v.default + ) + for (k,v) in self._class_data.items() if k not in API_NOT_ALLOWED + ] + + for fields in additional_fields: + self._model_def.append(ModelDef( + field=underscore(fields["key"]), + field_alias=fields["key"], + field_type=fields["type"], + field_value=fields["default"], + field_exclude=fields["exclude"] if "exclude" in fields else False)) + + def generate_model(self): + """ + Creates a pydantic BaseModel + from the json and overrides provided at initialization + """ + fields = { + d.field: (d.field_type, Field(default=d.field_value, alias=d.field_alias, exclude=d.field_exclude)) for d in self._model_def + } + DynamicModel = create_model(self._model_name, **fields) + DynamicModel.__config__.allow_population_by_field_name = True + DynamicModel.__config__.allow_mutation = True + return DynamicModel + +StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator( + "StableDiffusionProcessingTxt2Img", + StableDiffusionProcessingTxt2Img, + [{"key": "sampler_index", "type": str, "default": "Euler"}] +).generate_model() + +StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator( + "StableDiffusionProcessingImg2Img", + StableDiffusionProcessingImg2Img, + [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}] +).generate_model() + +class TextToImageResponse(BaseModel): + images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.") + parameters: dict + info: str + +class ImageToImageResponse(BaseModel): + images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.") + parameters: dict + info: str + +class ExtrasBaseRequest(BaseModel): + resize_mode: Literal[0, 1] = Field(default=0, title="Resize Mode", description="Sets the resize mode: 0 to upscale by upscaling_resize amount, 1 to upscale up to upscaling_resize_h x upscaling_resize_w.") + show_extras_results: bool = Field(default=True, title="Show results", description="Should the backend return the generated image?") + gfpgan_visibility: float = Field(default=0, title="GFPGAN Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of GFPGAN, values should be between 0 and 1.") + codeformer_visibility: float = Field(default=0, title="CodeFormer Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of CodeFormer, values should be between 0 and 1.") + codeformer_weight: float = Field(default=0, title="CodeFormer Weight", ge=0, le=1, allow_inf_nan=False, description="Sets the weight of CodeFormer, values should be between 0 and 1.") + upscaling_resize: float = Field(default=2, title="Upscaling Factor", ge=1, le=4, description="By how much to upscale the image, only used when resize_mode=0.") + upscaling_resize_w: int = Field(default=512, title="Target Width", ge=1, description="Target width for the upscaler to hit. Only used when resize_mode=1.") + upscaling_resize_h: int = Field(default=512, title="Target Height", ge=1, description="Target height for the upscaler to hit. Only used when resize_mode=1.") + upscaling_crop: bool = Field(default=True, title="Crop to fit", description="Should the upscaler crop the image to fit in the choosen size?") + upscaler_1: str = Field(default="None", title="Main upscaler", description=f"The name of the main upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}") + upscaler_2: str = Field(default="None", title="Secondary upscaler", description=f"The name of the secondary upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}") + extras_upscaler_2_visibility: float = Field(default=0, title="Secondary upscaler visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of secondary upscaler, values should be between 0 and 1.") + +class ExtraBaseResponse(BaseModel): + html_info: str = Field(title="HTML info", description="A series of HTML tags containing the process info.") + +class ExtrasSingleImageRequest(ExtrasBaseRequest): + image: str = Field(default="", title="Image", description="Image to work on, must be a Base64 string containing the image's data.") + +class ExtrasSingleImageResponse(ExtraBaseResponse): + image: str = Field(default=None, title="Image", description="The generated image in base64 format.") + +class FileData(BaseModel): + data: str = Field(title="File data", description="Base64 representation of the file") + name: str = Field(title="File name") + +class ExtrasBatchImagesRequest(ExtrasBaseRequest): + imageList: list[FileData] = Field(title="Images", description="List of images to work on. Must be Base64 strings") + +class ExtrasBatchImagesResponse(ExtraBaseResponse): + images: list[str] = Field(title="Images", description="The generated images in base64 format.") + +class PNGInfoRequest(BaseModel): + image: str = Field(title="Image", description="The base64 encoded PNG image") + +class PNGInfoResponse(BaseModel): + info: str = Field(title="Image info", description="A string with all the info the image had") + +class ProgressRequest(BaseModel): + skip_current_image: bool = Field(default=False, title="Skip current image", description="Skip current image serialization") + +class ProgressResponse(BaseModel): + progress: float = Field(title="Progress", description="The progress with a range of 0 to 1") + eta_relative: float = Field(title="ETA in secs") + state: dict = Field(title="State", description="The current state snapshot") + current_image: str = Field(default=None, title="Current image", description="The current image in base64 format. opts.show_progress_every_n_steps is required for this to work.") diff --git a/modules/api/processing.py b/modules/api/processing.py deleted file mode 100644 index 4c541241..00000000 --- a/modules/api/processing.py +++ /dev/null @@ -1,99 +0,0 @@ -from inflection import underscore -from typing import Any, Dict, Optional -from pydantic import BaseModel, Field, create_model -from modules.processing import StableDiffusionProcessingTxt2Img -import inspect - - -API_NOT_ALLOWED = [ - "self", - "kwargs", - "sd_model", - "outpath_samples", - "outpath_grids", - "sampler_index", - "do_not_save_samples", - "do_not_save_grid", - "extra_generation_params", - "overlay_images", - "do_not_reload_embeddings", - "seed_enable_extras", - "prompt_for_display", - "sampler_noise_scheduler_override", - "ddim_discretize" -] - -class ModelDef(BaseModel): - """Assistance Class for Pydantic Dynamic Model Generation""" - - field: str - field_alias: str - field_type: Any - field_value: Any - - -class PydanticModelGenerator: - """ - Takes in created classes and stubs them out in a way FastAPI/Pydantic is happy about: - source_data is a snapshot of the default values produced by the class - params are the names of the actual keys required by __init__ - """ - - def __init__( - self, - model_name: str = None, - class_instance = None, - additional_fields = None, - ): - def field_type_generator(k, v): - # field_type = str if not overrides.get(k) else overrides[k]["type"] - # print(k, v.annotation, v.default) - field_type = v.annotation - - return Optional[field_type] - - def merge_class_params(class_): - all_classes = list(filter(lambda x: x is not object, inspect.getmro(class_))) - parameters = {} - for classes in all_classes: - parameters = {**parameters, **inspect.signature(classes.__init__).parameters} - return parameters - - - self._model_name = model_name - self._class_data = merge_class_params(class_instance) - self._model_def = [ - ModelDef( - field=underscore(k), - field_alias=k, - field_type=field_type_generator(k, v), - field_value=v.default - ) - for (k,v) in self._class_data.items() if k not in API_NOT_ALLOWED - ] - - for fields in additional_fields: - self._model_def.append(ModelDef( - field=underscore(fields["key"]), - field_alias=fields["key"], - field_type=fields["type"], - field_value=fields["default"])) - - def generate_model(self): - """ - Creates a pydantic BaseModel - from the json and overrides provided at initialization - """ - fields = { - d.field: (d.field_type, Field(default=d.field_value, alias=d.field_alias)) for d in self._model_def - } - DynamicModel = create_model(self._model_name, **fields) - DynamicModel.__config__.allow_population_by_field_name = True - DynamicModel.__config__.allow_mutation = True - return DynamicModel - -StableDiffusionProcessingAPI = PydanticModelGenerator( - "StableDiffusionProcessingTxt2Img", - StableDiffusionProcessingTxt2Img, - [{"key": "sampler_index", "type": str, "default": "Euler"}] -).generate_model()
\ No newline at end of file |