diff options
author | AUTOMATIC1111 <16777216c@gmail.com> | 2022-11-04 06:02:15 +0000 |
---|---|---|
committer | GitHub <noreply@github.com> | 2022-11-04 06:02:15 +0000 |
commit | 4918eb6ce484caa4bc5a9f668bb466a5122a9c87 (patch) | |
tree | 76a0e42461d620764ad810c5b8dbd5b28d757519 /modules/api | |
parent | 80844ac861504e7c67a3d4dec0cbed9f6f4b3e24 (diff) | |
parent | 2cf3d2ac15530dbc8fdb486a4dac03b710972445 (diff) | |
download | stable-diffusion-webui-gfx803-4918eb6ce484caa4bc5a9f668bb466a5122a9c87.tar.gz stable-diffusion-webui-gfx803-4918eb6ce484caa4bc5a9f668bb466a5122a9c87.tar.bz2 stable-diffusion-webui-gfx803-4918eb6ce484caa4bc5a9f668bb466a5122a9c87.zip |
Merge branch 'master' into hn-activation
Diffstat (limited to 'modules/api')
-rw-r--r-- | modules/api/api.py | 195 | ||||
-rw-r--r-- | modules/api/models.py | 92 |
2 files changed, 207 insertions, 80 deletions
diff --git a/modules/api/api.py b/modules/api/api.py index 6e9d6097..71c9c160 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -1,29 +1,39 @@ -from modules.api.models import StableDiffusionTxt2ImgProcessingAPI, StableDiffusionImg2ImgProcessingAPI -from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images -from modules.sd_samplers import all_samplers -from modules.extras import run_pnginfo -import modules.shared as shared -import uvicorn -from fastapi import Body, APIRouter, HTTPException -from fastapi.responses import JSONResponse -from pydantic import BaseModel, Field, Json -from typing import List -import json -import io import base64 -from PIL import Image +import io +import time +import uvicorn +from gradio.processing_utils import decode_base64_to_file, decode_base64_to_image +from fastapi import APIRouter, Depends, HTTPException +import modules.shared as shared +from modules.api.models import * +from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images +from modules.sd_samplers import all_samplers, sample_to_image, samples_to_image_grid +from modules.extras import run_extras, run_pnginfo + + +def upscaler_to_index(name: str): + try: + return [x.name.lower() for x in shared.sd_upscalers].index(name.lower()) + except: + raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be on of these: {' , '.join([x.name for x in sd_upscalers])}") + sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None) -class TextToImageResponse(BaseModel): - images: List[str] = Field(default=None, title="Image", description="The generated image in base64 format.") - parameters: Json - info: Json -class ImageToImageResponse(BaseModel): - images: List[str] = Field(default=None, title="Image", description="The generated image in base64 format.") - parameters: Json - info: Json +def setUpscalers(req: dict): + reqDict = vars(req) + reqDict['extras_upscaler_1'] = upscaler_to_index(req.upscaler_1) + reqDict['extras_upscaler_2'] = upscaler_to_index(req.upscaler_2) + reqDict.pop('upscaler_1') + reqDict.pop('upscaler_2') + return reqDict + + +def encode_pil_to_base64(image): + buffer = io.BytesIO() + image.save(buffer, format="png") + return base64.b64encode(buffer.getvalue()) class Api: @@ -31,25 +41,22 @@ class Api: self.router = APIRouter() self.app = app self.queue_lock = queue_lock - self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"]) - self.app.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"]) - - def __base64_to_image(self, base64_string): - # if has a comma, deal with prefix - if "," in base64_string: - base64_string = base64_string.split(",")[1] - imgdata = base64.b64decode(base64_string) - # convert base64 to PIL image - return Image.open(io.BytesIO(imgdata)) + self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=TextToImageResponse) + self.app.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=ImageToImageResponse) + self.app.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse) + self.app.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse) + self.app.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=PNGInfoResponse) + self.app.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=ProgressResponse) + self.app.add_api_route("/sdapi/v1/interrupt", self.interruptapi, methods=["POST"]) def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI): sampler_index = sampler_to_index(txt2imgreq.sampler_index) - + if sampler_index is None: - raise HTTPException(status_code=404, detail="Sampler not found") - + raise HTTPException(status_code=404, detail="Sampler not found") + populate = txt2imgreq.copy(update={ # Override __init__ params - "sd_model": shared.sd_model, + "sd_model": shared.sd_model, "sampler_index": sampler_index[0], "do_not_save_samples": True, "do_not_save_grid": True @@ -57,40 +64,39 @@ class Api: ) p = StableDiffusionProcessingTxt2Img(**vars(populate)) # Override object param + + shared.state.begin() + with self.queue_lock: processed = process_images(p) - - b64images = [] - for i in processed.images: - buffer = io.BytesIO() - i.save(buffer, format="png") - b64images.append(base64.b64encode(buffer.getvalue())) - return TextToImageResponse(images=b64images, parameters=json.dumps(vars(txt2imgreq)), info=processed.js()) - - + shared.state.end() + + b64images = list(map(encode_pil_to_base64, processed.images)) + + return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js()) def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI): sampler_index = sampler_to_index(img2imgreq.sampler_index) - + if sampler_index is None: - raise HTTPException(status_code=404, detail="Sampler not found") + raise HTTPException(status_code=404, detail="Sampler not found") init_images = img2imgreq.init_images if init_images is None: - raise HTTPException(status_code=404, detail="Init image not found") + raise HTTPException(status_code=404, detail="Init image not found") mask = img2imgreq.mask if mask: - mask = self.__base64_to_image(mask) + mask = decode_base64_to_image(mask) + - populate = img2imgreq.copy(update={ # Override __init__ params - "sd_model": shared.sd_model, + "sd_model": shared.sd_model, "sampler_index": sampler_index[0], "do_not_save_samples": True, - "do_not_save_grid": True, + "do_not_save_grid": True, "mask": mask } ) @@ -98,31 +104,92 @@ class Api: imgs = [] for img in init_images: - img = self.__base64_to_image(img) + img = decode_base64_to_image(img) imgs = [img] * p.batch_size p.init_images = imgs - # Override object param + + shared.state.begin() + with self.queue_lock: processed = process_images(p) - - b64images = [] - for i in processed.images: - buffer = io.BytesIO() - i.save(buffer, format="png") - b64images.append(base64.b64encode(buffer.getvalue())) + + shared.state.end() + + b64images = list(map(encode_pil_to_base64, processed.images)) if (not img2imgreq.include_init_images): img2imgreq.init_images = None img2imgreq.mask = None - return ImageToImageResponse(images=b64images, parameters=json.dumps(vars(img2imgreq)), info=processed.js()) + return ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.js()) + + def extras_single_image_api(self, req: ExtrasSingleImageRequest): + reqDict = setUpscalers(req) + + reqDict['image'] = decode_base64_to_image(reqDict['image']) + + with self.queue_lock: + result = run_extras(extras_mode=0, image_folder="", input_dir="", output_dir="", **reqDict) + + return ExtrasSingleImageResponse(image=encode_pil_to_base64(result[0][0]), html_info=result[1]) + + def extras_batch_images_api(self, req: ExtrasBatchImagesRequest): + reqDict = setUpscalers(req) + + def prepareFiles(file): + file = decode_base64_to_file(file.data, file_path=file.name) + file.orig_name = file.name + return file + + reqDict['image_folder'] = list(map(prepareFiles, reqDict['imageList'])) + reqDict.pop('imageList') + + with self.queue_lock: + result = run_extras(extras_mode=1, image="", input_dir="", output_dir="", **reqDict) + + return ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1]) + + def pnginfoapi(self, req: PNGInfoRequest): + if(not req.image.strip()): + return PNGInfoResponse(info="") + + result = run_pnginfo(decode_base64_to_image(req.image.strip())) + + return PNGInfoResponse(info=result[1]) + + def progressapi(self, req: ProgressRequest = Depends()): + # copy from check_progress_call of ui.py + + if shared.state.job_count == 0: + return ProgressResponse(progress=0, eta_relative=0, state=shared.state.dict()) + + # avoid dividing zero + progress = 0.01 + + if shared.state.job_count > 0: + progress += shared.state.job_no / shared.state.job_count + if shared.state.sampling_steps > 0: + progress += 1 / shared.state.job_count * shared.state.sampling_step / shared.state.sampling_steps + + time_since_start = time.time() - shared.state.time_start + eta = (time_since_start/progress) + eta_relative = eta-time_since_start + + progress = min(progress, 1) + + shared.state.set_current_image() + + current_image = None + if shared.state.current_image and not req.skip_current_image: + current_image = encode_pil_to_base64(shared.state.current_image) + + return ProgressResponse(progress=progress, eta_relative=eta_relative, state=shared.state.dict(), current_image=current_image) - def extrasapi(self): - raise NotImplementedError + def interruptapi(self): + shared.state.interrupt() - def pnginfoapi(self): - raise NotImplementedError + return {} def launch(self, server_name, port): self.app.include_router(self.router) diff --git a/modules/api/models.py b/modules/api/models.py index 079e33d9..68fb45c6 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -1,10 +1,11 @@ -from array import array -from inflection import underscore -from typing import Any, Dict, Optional +import inspect +from click import prompt from pydantic import BaseModel, Field, create_model +from typing import Any, Optional +from typing_extensions import Literal +from inflection import underscore from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img -import inspect - +from modules.shared import sd_upscalers API_NOT_ALLOWED = [ "self", @@ -51,17 +52,17 @@ class PydanticModelGenerator: # field_type = str if not overrides.get(k) else overrides[k]["type"] # print(k, v.annotation, v.default) field_type = v.annotation - + return Optional[field_type] - + def merge_class_params(class_): all_classes = list(filter(lambda x: x is not object, inspect.getmro(class_))) parameters = {} for classes in all_classes: parameters = {**parameters, **inspect.signature(classes.__init__).parameters} return parameters - - + + self._model_name = model_name self._class_data = merge_class_params(class_instance) self._model_def = [ @@ -73,11 +74,11 @@ class PydanticModelGenerator: ) for (k,v) in self._class_data.items() if k not in API_NOT_ALLOWED ] - + for fields in additional_fields: self._model_def.append(ModelDef( - field=underscore(fields["key"]), - field_alias=fields["key"], + field=underscore(fields["key"]), + field_alias=fields["key"], field_type=fields["type"], field_value=fields["default"], field_exclude=fields["exclude"] if "exclude" in fields else False)) @@ -94,15 +95,74 @@ class PydanticModelGenerator: DynamicModel.__config__.allow_population_by_field_name = True DynamicModel.__config__.allow_mutation = True return DynamicModel - + StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator( - "StableDiffusionProcessingTxt2Img", + "StableDiffusionProcessingTxt2Img", StableDiffusionProcessingTxt2Img, [{"key": "sampler_index", "type": str, "default": "Euler"}] ).generate_model() StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator( - "StableDiffusionProcessingImg2Img", + "StableDiffusionProcessingImg2Img", StableDiffusionProcessingImg2Img, [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}] -).generate_model()
\ No newline at end of file +).generate_model() + +class TextToImageResponse(BaseModel): + images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.") + parameters: dict + info: str + +class ImageToImageResponse(BaseModel): + images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.") + parameters: dict + info: str + +class ExtrasBaseRequest(BaseModel): + resize_mode: Literal[0, 1] = Field(default=0, title="Resize Mode", description="Sets the resize mode: 0 to upscale by upscaling_resize amount, 1 to upscale up to upscaling_resize_h x upscaling_resize_w.") + show_extras_results: bool = Field(default=True, title="Show results", description="Should the backend return the generated image?") + gfpgan_visibility: float = Field(default=0, title="GFPGAN Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of GFPGAN, values should be between 0 and 1.") + codeformer_visibility: float = Field(default=0, title="CodeFormer Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of CodeFormer, values should be between 0 and 1.") + codeformer_weight: float = Field(default=0, title="CodeFormer Weight", ge=0, le=1, allow_inf_nan=False, description="Sets the weight of CodeFormer, values should be between 0 and 1.") + upscaling_resize: float = Field(default=2, title="Upscaling Factor", ge=1, le=4, description="By how much to upscale the image, only used when resize_mode=0.") + upscaling_resize_w: int = Field(default=512, title="Target Width", ge=1, description="Target width for the upscaler to hit. Only used when resize_mode=1.") + upscaling_resize_h: int = Field(default=512, title="Target Height", ge=1, description="Target height for the upscaler to hit. Only used when resize_mode=1.") + upscaling_crop: bool = Field(default=True, title="Crop to fit", description="Should the upscaler crop the image to fit in the choosen size?") + upscaler_1: str = Field(default="None", title="Main upscaler", description=f"The name of the main upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}") + upscaler_2: str = Field(default="None", title="Secondary upscaler", description=f"The name of the secondary upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}") + extras_upscaler_2_visibility: float = Field(default=0, title="Secondary upscaler visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of secondary upscaler, values should be between 0 and 1.") + upscale_first: bool = Field(default=False, title="Upscale first", description="Should the upscaler run before restoring faces?") + +class ExtraBaseResponse(BaseModel): + html_info: str = Field(title="HTML info", description="A series of HTML tags containing the process info.") + +class ExtrasSingleImageRequest(ExtrasBaseRequest): + image: str = Field(default="", title="Image", description="Image to work on, must be a Base64 string containing the image's data.") + +class ExtrasSingleImageResponse(ExtraBaseResponse): + image: str = Field(default=None, title="Image", description="The generated image in base64 format.") + +class FileData(BaseModel): + data: str = Field(title="File data", description="Base64 representation of the file") + name: str = Field(title="File name") + +class ExtrasBatchImagesRequest(ExtrasBaseRequest): + imageList: list[FileData] = Field(title="Images", description="List of images to work on. Must be Base64 strings") + +class ExtrasBatchImagesResponse(ExtraBaseResponse): + images: list[str] = Field(title="Images", description="The generated images in base64 format.") + +class PNGInfoRequest(BaseModel): + image: str = Field(title="Image", description="The base64 encoded PNG image") + +class PNGInfoResponse(BaseModel): + info: str = Field(title="Image info", description="A string with all the info the image had") + +class ProgressRequest(BaseModel): + skip_current_image: bool = Field(default=False, title="Skip current image", description="Skip current image serialization") + +class ProgressResponse(BaseModel): + progress: float = Field(title="Progress", description="The progress with a range of 0 to 1") + eta_relative: float = Field(title="ETA in secs") + state: dict = Field(title="State", description="The current state snapshot") + current_image: str = Field(default=None, title="Current image", description="The current image in base64 format. opts.show_progress_every_n_steps is required for this to work.") |