diff options
author | AUTOMATIC1111 <16777216c@gmail.com> | 2024-03-02 04:03:13 +0000 |
---|---|---|
committer | AUTOMATIC1111 <16777216c@gmail.com> | 2024-03-02 04:03:13 +0000 |
commit | bef51aed032c0aaa5cfd80445bc4cf0d85b408b5 (patch) | |
tree | 42957c454a4ac8d98488f19811b60359d05d88ba /modules/codeformer | |
parent | cf2772fab0af5573da775e7437e6acdca424f26e (diff) | |
parent | 13984857890401e8605a3e53bd671e900a18d73f (diff) | |
download | stable-diffusion-webui-gfx803-bef51aed032c0aaa5cfd80445bc4cf0d85b408b5.tar.gz stable-diffusion-webui-gfx803-bef51aed032c0aaa5cfd80445bc4cf0d85b408b5.tar.bz2 stable-diffusion-webui-gfx803-bef51aed032c0aaa5cfd80445bc4cf0d85b408b5.zip |
Merge branch 'release_candidate'
Diffstat (limited to 'modules/codeformer')
-rw-r--r-- | modules/codeformer/codeformer_arch.py | 276 | ||||
-rw-r--r-- | modules/codeformer/vqgan_arch.py | 435 |
2 files changed, 0 insertions, 711 deletions
diff --git a/modules/codeformer/codeformer_arch.py b/modules/codeformer/codeformer_arch.py deleted file mode 100644 index 12db6814..00000000 --- a/modules/codeformer/codeformer_arch.py +++ /dev/null @@ -1,276 +0,0 @@ -# this file is copied from CodeFormer repository. Please see comment in modules/codeformer_model.py - -import math -import torch -from torch import nn, Tensor -import torch.nn.functional as F -from typing import Optional - -from modules.codeformer.vqgan_arch import VQAutoEncoder, ResBlock -from basicsr.utils.registry import ARCH_REGISTRY - -def calc_mean_std(feat, eps=1e-5): - """Calculate mean and std for adaptive_instance_normalization. - - Args: - feat (Tensor): 4D tensor. - eps (float): A small value added to the variance to avoid - divide-by-zero. Default: 1e-5. - """ - size = feat.size() - assert len(size) == 4, 'The input feature should be 4D tensor.' - b, c = size[:2] - feat_var = feat.view(b, c, -1).var(dim=2) + eps - feat_std = feat_var.sqrt().view(b, c, 1, 1) - feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1) - return feat_mean, feat_std - - -def adaptive_instance_normalization(content_feat, style_feat): - """Adaptive instance normalization. - - Adjust the reference features to have the similar color and illuminations - as those in the degradate features. - - Args: - content_feat (Tensor): The reference feature. - style_feat (Tensor): The degradate features. - """ - size = content_feat.size() - style_mean, style_std = calc_mean_std(style_feat) - content_mean, content_std = calc_mean_std(content_feat) - normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size) - return normalized_feat * style_std.expand(size) + style_mean.expand(size) - - -class PositionEmbeddingSine(nn.Module): - """ - This is a more standard version of the position embedding, very similar to the one - used by the Attention is all you need paper, generalized to work on images. - """ - - def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None): - super().__init__() - self.num_pos_feats = num_pos_feats - self.temperature = temperature - self.normalize = normalize - if scale is not None and normalize is False: - raise ValueError("normalize should be True if scale is passed") - if scale is None: - scale = 2 * math.pi - self.scale = scale - - def forward(self, x, mask=None): - if mask is None: - mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool) - not_mask = ~mask - y_embed = not_mask.cumsum(1, dtype=torch.float32) - x_embed = not_mask.cumsum(2, dtype=torch.float32) - if self.normalize: - eps = 1e-6 - y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale - x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale - - dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) - dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) - - pos_x = x_embed[:, :, :, None] / dim_t - pos_y = y_embed[:, :, :, None] / dim_t - pos_x = torch.stack( - (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4 - ).flatten(3) - pos_y = torch.stack( - (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4 - ).flatten(3) - pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) - return pos - -def _get_activation_fn(activation): - """Return an activation function given a string""" - if activation == "relu": - return F.relu - if activation == "gelu": - return F.gelu - if activation == "glu": - return F.glu - raise RuntimeError(F"activation should be relu/gelu, not {activation}.") - - -class TransformerSALayer(nn.Module): - def __init__(self, embed_dim, nhead=8, dim_mlp=2048, dropout=0.0, activation="gelu"): - super().__init__() - self.self_attn = nn.MultiheadAttention(embed_dim, nhead, dropout=dropout) - # Implementation of Feedforward model - MLP - self.linear1 = nn.Linear(embed_dim, dim_mlp) - self.dropout = nn.Dropout(dropout) - self.linear2 = nn.Linear(dim_mlp, embed_dim) - - self.norm1 = nn.LayerNorm(embed_dim) - self.norm2 = nn.LayerNorm(embed_dim) - self.dropout1 = nn.Dropout(dropout) - self.dropout2 = nn.Dropout(dropout) - - self.activation = _get_activation_fn(activation) - - def with_pos_embed(self, tensor, pos: Optional[Tensor]): - return tensor if pos is None else tensor + pos - - def forward(self, tgt, - tgt_mask: Optional[Tensor] = None, - tgt_key_padding_mask: Optional[Tensor] = None, - query_pos: Optional[Tensor] = None): - - # self attention - tgt2 = self.norm1(tgt) - q = k = self.with_pos_embed(tgt2, query_pos) - tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask, - key_padding_mask=tgt_key_padding_mask)[0] - tgt = tgt + self.dropout1(tgt2) - - # ffn - tgt2 = self.norm2(tgt) - tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) - tgt = tgt + self.dropout2(tgt2) - return tgt - -class Fuse_sft_block(nn.Module): - def __init__(self, in_ch, out_ch): - super().__init__() - self.encode_enc = ResBlock(2*in_ch, out_ch) - - self.scale = nn.Sequential( - nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1), - nn.LeakyReLU(0.2, True), - nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1)) - - self.shift = nn.Sequential( - nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1), - nn.LeakyReLU(0.2, True), - nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1)) - - def forward(self, enc_feat, dec_feat, w=1): - enc_feat = self.encode_enc(torch.cat([enc_feat, dec_feat], dim=1)) - scale = self.scale(enc_feat) - shift = self.shift(enc_feat) - residual = w * (dec_feat * scale + shift) - out = dec_feat + residual - return out - - -@ARCH_REGISTRY.register() -class CodeFormer(VQAutoEncoder): - def __init__(self, dim_embd=512, n_head=8, n_layers=9, - codebook_size=1024, latent_size=256, - connect_list=('32', '64', '128', '256'), - fix_modules=('quantize', 'generator')): - super(CodeFormer, self).__init__(512, 64, [1, 2, 2, 4, 4, 8], 'nearest',2, [16], codebook_size) - - if fix_modules is not None: - for module in fix_modules: - for param in getattr(self, module).parameters(): - param.requires_grad = False - - self.connect_list = connect_list - self.n_layers = n_layers - self.dim_embd = dim_embd - self.dim_mlp = dim_embd*2 - - self.position_emb = nn.Parameter(torch.zeros(latent_size, self.dim_embd)) - self.feat_emb = nn.Linear(256, self.dim_embd) - - # transformer - self.ft_layers = nn.Sequential(*[TransformerSALayer(embed_dim=dim_embd, nhead=n_head, dim_mlp=self.dim_mlp, dropout=0.0) - for _ in range(self.n_layers)]) - - # logits_predict head - self.idx_pred_layer = nn.Sequential( - nn.LayerNorm(dim_embd), - nn.Linear(dim_embd, codebook_size, bias=False)) - - self.channels = { - '16': 512, - '32': 256, - '64': 256, - '128': 128, - '256': 128, - '512': 64, - } - - # after second residual block for > 16, before attn layer for ==16 - self.fuse_encoder_block = {'512':2, '256':5, '128':8, '64':11, '32':14, '16':18} - # after first residual block for > 16, before attn layer for ==16 - self.fuse_generator_block = {'16':6, '32': 9, '64':12, '128':15, '256':18, '512':21} - - # fuse_convs_dict - self.fuse_convs_dict = nn.ModuleDict() - for f_size in self.connect_list: - in_ch = self.channels[f_size] - self.fuse_convs_dict[f_size] = Fuse_sft_block(in_ch, in_ch) - - def _init_weights(self, module): - if isinstance(module, (nn.Linear, nn.Embedding)): - module.weight.data.normal_(mean=0.0, std=0.02) - if isinstance(module, nn.Linear) and module.bias is not None: - module.bias.data.zero_() - elif isinstance(module, nn.LayerNorm): - module.bias.data.zero_() - module.weight.data.fill_(1.0) - - def forward(self, x, w=0, detach_16=True, code_only=False, adain=False): - # ################### Encoder ##################### - enc_feat_dict = {} - out_list = [self.fuse_encoder_block[f_size] for f_size in self.connect_list] - for i, block in enumerate(self.encoder.blocks): - x = block(x) - if i in out_list: - enc_feat_dict[str(x.shape[-1])] = x.clone() - - lq_feat = x - # ################# Transformer ################### - # quant_feat, codebook_loss, quant_stats = self.quantize(lq_feat) - pos_emb = self.position_emb.unsqueeze(1).repeat(1,x.shape[0],1) - # BCHW -> BC(HW) -> (HW)BC - feat_emb = self.feat_emb(lq_feat.flatten(2).permute(2,0,1)) - query_emb = feat_emb - # Transformer encoder - for layer in self.ft_layers: - query_emb = layer(query_emb, query_pos=pos_emb) - - # output logits - logits = self.idx_pred_layer(query_emb) # (hw)bn - logits = logits.permute(1,0,2) # (hw)bn -> b(hw)n - - if code_only: # for training stage II - # logits doesn't need softmax before cross_entropy loss - return logits, lq_feat - - # ################# Quantization ################### - # if self.training: - # quant_feat = torch.einsum('btn,nc->btc', [soft_one_hot, self.quantize.embedding.weight]) - # # b(hw)c -> bc(hw) -> bchw - # quant_feat = quant_feat.permute(0,2,1).view(lq_feat.shape) - # ------------ - soft_one_hot = F.softmax(logits, dim=2) - _, top_idx = torch.topk(soft_one_hot, 1, dim=2) - quant_feat = self.quantize.get_codebook_feat(top_idx, shape=[x.shape[0],16,16,256]) - # preserve gradients - # quant_feat = lq_feat + (quant_feat - lq_feat).detach() - - if detach_16: - quant_feat = quant_feat.detach() # for training stage III - if adain: - quant_feat = adaptive_instance_normalization(quant_feat, lq_feat) - - # ################## Generator #################### - x = quant_feat - fuse_list = [self.fuse_generator_block[f_size] for f_size in self.connect_list] - - for i, block in enumerate(self.generator.blocks): - x = block(x) - if i in fuse_list: # fuse after i-th block - f_size = str(x.shape[-1]) - if w>0: - x = self.fuse_convs_dict[f_size](enc_feat_dict[f_size].detach(), x, w) - out = x - # logits doesn't need softmax before cross_entropy loss - return out, logits, lq_feat diff --git a/modules/codeformer/vqgan_arch.py b/modules/codeformer/vqgan_arch.py deleted file mode 100644 index 09ee6660..00000000 --- a/modules/codeformer/vqgan_arch.py +++ /dev/null @@ -1,435 +0,0 @@ -# this file is copied from CodeFormer repository. Please see comment in modules/codeformer_model.py - -''' -VQGAN code, adapted from the original created by the Unleashing Transformers authors: -https://github.com/samb-t/unleashing-transformers/blob/master/models/vqgan.py - -''' -import torch -import torch.nn as nn -import torch.nn.functional as F -from basicsr.utils import get_root_logger -from basicsr.utils.registry import ARCH_REGISTRY - -def normalize(in_channels): - return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) - - -@torch.jit.script -def swish(x): - return x*torch.sigmoid(x) - - -# Define VQVAE classes -class VectorQuantizer(nn.Module): - def __init__(self, codebook_size, emb_dim, beta): - super(VectorQuantizer, self).__init__() - self.codebook_size = codebook_size # number of embeddings - self.emb_dim = emb_dim # dimension of embedding - self.beta = beta # commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2 - self.embedding = nn.Embedding(self.codebook_size, self.emb_dim) - self.embedding.weight.data.uniform_(-1.0 / self.codebook_size, 1.0 / self.codebook_size) - - def forward(self, z): - # reshape z -> (batch, height, width, channel) and flatten - z = z.permute(0, 2, 3, 1).contiguous() - z_flattened = z.view(-1, self.emb_dim) - - # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z - d = (z_flattened ** 2).sum(dim=1, keepdim=True) + (self.embedding.weight**2).sum(1) - \ - 2 * torch.matmul(z_flattened, self.embedding.weight.t()) - - mean_distance = torch.mean(d) - # find closest encodings - # min_encoding_indices = torch.argmin(d, dim=1).unsqueeze(1) - min_encoding_scores, min_encoding_indices = torch.topk(d, 1, dim=1, largest=False) - # [0-1], higher score, higher confidence - min_encoding_scores = torch.exp(-min_encoding_scores/10) - - min_encodings = torch.zeros(min_encoding_indices.shape[0], self.codebook_size).to(z) - min_encodings.scatter_(1, min_encoding_indices, 1) - - # get quantized latent vectors - z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape) - # compute loss for embedding - loss = torch.mean((z_q.detach()-z)**2) + self.beta * torch.mean((z_q - z.detach()) ** 2) - # preserve gradients - z_q = z + (z_q - z).detach() - - # perplexity - e_mean = torch.mean(min_encodings, dim=0) - perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10))) - # reshape back to match original input shape - z_q = z_q.permute(0, 3, 1, 2).contiguous() - - return z_q, loss, { - "perplexity": perplexity, - "min_encodings": min_encodings, - "min_encoding_indices": min_encoding_indices, - "min_encoding_scores": min_encoding_scores, - "mean_distance": mean_distance - } - - def get_codebook_feat(self, indices, shape): - # input indices: batch*token_num -> (batch*token_num)*1 - # shape: batch, height, width, channel - indices = indices.view(-1,1) - min_encodings = torch.zeros(indices.shape[0], self.codebook_size).to(indices) - min_encodings.scatter_(1, indices, 1) - # get quantized latent vectors - z_q = torch.matmul(min_encodings.float(), self.embedding.weight) - - if shape is not None: # reshape back to match original input shape - z_q = z_q.view(shape).permute(0, 3, 1, 2).contiguous() - - return z_q - - -class GumbelQuantizer(nn.Module): - def __init__(self, codebook_size, emb_dim, num_hiddens, straight_through=False, kl_weight=5e-4, temp_init=1.0): - super().__init__() - self.codebook_size = codebook_size # number of embeddings - self.emb_dim = emb_dim # dimension of embedding - self.straight_through = straight_through - self.temperature = temp_init - self.kl_weight = kl_weight - self.proj = nn.Conv2d(num_hiddens, codebook_size, 1) # projects last encoder layer to quantized logits - self.embed = nn.Embedding(codebook_size, emb_dim) - - def forward(self, z): - hard = self.straight_through if self.training else True - - logits = self.proj(z) - - soft_one_hot = F.gumbel_softmax(logits, tau=self.temperature, dim=1, hard=hard) - - z_q = torch.einsum("b n h w, n d -> b d h w", soft_one_hot, self.embed.weight) - - # + kl divergence to the prior loss - qy = F.softmax(logits, dim=1) - diff = self.kl_weight * torch.sum(qy * torch.log(qy * self.codebook_size + 1e-10), dim=1).mean() - min_encoding_indices = soft_one_hot.argmax(dim=1) - - return z_q, diff, { - "min_encoding_indices": min_encoding_indices - } - - -class Downsample(nn.Module): - def __init__(self, in_channels): - super().__init__() - self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0) - - def forward(self, x): - pad = (0, 1, 0, 1) - x = torch.nn.functional.pad(x, pad, mode="constant", value=0) - x = self.conv(x) - return x - - -class Upsample(nn.Module): - def __init__(self, in_channels): - super().__init__() - self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) - - def forward(self, x): - x = F.interpolate(x, scale_factor=2.0, mode="nearest") - x = self.conv(x) - - return x - - -class ResBlock(nn.Module): - def __init__(self, in_channels, out_channels=None): - super(ResBlock, self).__init__() - self.in_channels = in_channels - self.out_channels = in_channels if out_channels is None else out_channels - self.norm1 = normalize(in_channels) - self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) - self.norm2 = normalize(out_channels) - self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) - if self.in_channels != self.out_channels: - self.conv_out = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) - - def forward(self, x_in): - x = x_in - x = self.norm1(x) - x = swish(x) - x = self.conv1(x) - x = self.norm2(x) - x = swish(x) - x = self.conv2(x) - if self.in_channels != self.out_channels: - x_in = self.conv_out(x_in) - - return x + x_in - - -class AttnBlock(nn.Module): - def __init__(self, in_channels): - super().__init__() - self.in_channels = in_channels - - self.norm = normalize(in_channels) - self.q = torch.nn.Conv2d( - in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0 - ) - self.k = torch.nn.Conv2d( - in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0 - ) - self.v = torch.nn.Conv2d( - in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0 - ) - self.proj_out = torch.nn.Conv2d( - in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0 - ) - - def forward(self, x): - h_ = x - h_ = self.norm(h_) - q = self.q(h_) - k = self.k(h_) - v = self.v(h_) - - # compute attention - b, c, h, w = q.shape - q = q.reshape(b, c, h*w) - q = q.permute(0, 2, 1) - k = k.reshape(b, c, h*w) - w_ = torch.bmm(q, k) - w_ = w_ * (int(c)**(-0.5)) - w_ = F.softmax(w_, dim=2) - - # attend to values - v = v.reshape(b, c, h*w) - w_ = w_.permute(0, 2, 1) - h_ = torch.bmm(v, w_) - h_ = h_.reshape(b, c, h, w) - - h_ = self.proj_out(h_) - - return x+h_ - - -class Encoder(nn.Module): - def __init__(self, in_channels, nf, emb_dim, ch_mult, num_res_blocks, resolution, attn_resolutions): - super().__init__() - self.nf = nf - self.num_resolutions = len(ch_mult) - self.num_res_blocks = num_res_blocks - self.resolution = resolution - self.attn_resolutions = attn_resolutions - - curr_res = self.resolution - in_ch_mult = (1,)+tuple(ch_mult) - - blocks = [] - # initial convultion - blocks.append(nn.Conv2d(in_channels, nf, kernel_size=3, stride=1, padding=1)) - - # residual and downsampling blocks, with attention on smaller res (16x16) - for i in range(self.num_resolutions): - block_in_ch = nf * in_ch_mult[i] - block_out_ch = nf * ch_mult[i] - for _ in range(self.num_res_blocks): - blocks.append(ResBlock(block_in_ch, block_out_ch)) - block_in_ch = block_out_ch - if curr_res in attn_resolutions: - blocks.append(AttnBlock(block_in_ch)) - - if i != self.num_resolutions - 1: - blocks.append(Downsample(block_in_ch)) - curr_res = curr_res // 2 - - # non-local attention block - blocks.append(ResBlock(block_in_ch, block_in_ch)) - blocks.append(AttnBlock(block_in_ch)) - blocks.append(ResBlock(block_in_ch, block_in_ch)) - - # normalise and convert to latent size - blocks.append(normalize(block_in_ch)) - blocks.append(nn.Conv2d(block_in_ch, emb_dim, kernel_size=3, stride=1, padding=1)) - self.blocks = nn.ModuleList(blocks) - - def forward(self, x): - for block in self.blocks: - x = block(x) - - return x - - -class Generator(nn.Module): - def __init__(self, nf, emb_dim, ch_mult, res_blocks, img_size, attn_resolutions): - super().__init__() - self.nf = nf - self.ch_mult = ch_mult - self.num_resolutions = len(self.ch_mult) - self.num_res_blocks = res_blocks - self.resolution = img_size - self.attn_resolutions = attn_resolutions - self.in_channels = emb_dim - self.out_channels = 3 - block_in_ch = self.nf * self.ch_mult[-1] - curr_res = self.resolution // 2 ** (self.num_resolutions-1) - - blocks = [] - # initial conv - blocks.append(nn.Conv2d(self.in_channels, block_in_ch, kernel_size=3, stride=1, padding=1)) - - # non-local attention block - blocks.append(ResBlock(block_in_ch, block_in_ch)) - blocks.append(AttnBlock(block_in_ch)) - blocks.append(ResBlock(block_in_ch, block_in_ch)) - - for i in reversed(range(self.num_resolutions)): - block_out_ch = self.nf * self.ch_mult[i] - - for _ in range(self.num_res_blocks): - blocks.append(ResBlock(block_in_ch, block_out_ch)) - block_in_ch = block_out_ch - - if curr_res in self.attn_resolutions: - blocks.append(AttnBlock(block_in_ch)) - - if i != 0: - blocks.append(Upsample(block_in_ch)) - curr_res = curr_res * 2 - - blocks.append(normalize(block_in_ch)) - blocks.append(nn.Conv2d(block_in_ch, self.out_channels, kernel_size=3, stride=1, padding=1)) - - self.blocks = nn.ModuleList(blocks) - - - def forward(self, x): - for block in self.blocks: - x = block(x) - - return x - - -@ARCH_REGISTRY.register() -class VQAutoEncoder(nn.Module): - def __init__(self, img_size, nf, ch_mult, quantizer="nearest", res_blocks=2, attn_resolutions=None, codebook_size=1024, emb_dim=256, - beta=0.25, gumbel_straight_through=False, gumbel_kl_weight=1e-8, model_path=None): - super().__init__() - logger = get_root_logger() - self.in_channels = 3 - self.nf = nf - self.n_blocks = res_blocks - self.codebook_size = codebook_size - self.embed_dim = emb_dim - self.ch_mult = ch_mult - self.resolution = img_size - self.attn_resolutions = attn_resolutions or [16] - self.quantizer_type = quantizer - self.encoder = Encoder( - self.in_channels, - self.nf, - self.embed_dim, - self.ch_mult, - self.n_blocks, - self.resolution, - self.attn_resolutions - ) - if self.quantizer_type == "nearest": - self.beta = beta #0.25 - self.quantize = VectorQuantizer(self.codebook_size, self.embed_dim, self.beta) - elif self.quantizer_type == "gumbel": - self.gumbel_num_hiddens = emb_dim - self.straight_through = gumbel_straight_through - self.kl_weight = gumbel_kl_weight - self.quantize = GumbelQuantizer( - self.codebook_size, - self.embed_dim, - self.gumbel_num_hiddens, - self.straight_through, - self.kl_weight - ) - self.generator = Generator( - self.nf, - self.embed_dim, - self.ch_mult, - self.n_blocks, - self.resolution, - self.attn_resolutions - ) - - if model_path is not None: - chkpt = torch.load(model_path, map_location='cpu') - if 'params_ema' in chkpt: - self.load_state_dict(torch.load(model_path, map_location='cpu')['params_ema']) - logger.info(f'vqgan is loaded from: {model_path} [params_ema]') - elif 'params' in chkpt: - self.load_state_dict(torch.load(model_path, map_location='cpu')['params']) - logger.info(f'vqgan is loaded from: {model_path} [params]') - else: - raise ValueError('Wrong params!') - - - def forward(self, x): - x = self.encoder(x) - quant, codebook_loss, quant_stats = self.quantize(x) - x = self.generator(quant) - return x, codebook_loss, quant_stats - - - -# patch based discriminator -@ARCH_REGISTRY.register() -class VQGANDiscriminator(nn.Module): - def __init__(self, nc=3, ndf=64, n_layers=4, model_path=None): - super().__init__() - - layers = [nn.Conv2d(nc, ndf, kernel_size=4, stride=2, padding=1), nn.LeakyReLU(0.2, True)] - ndf_mult = 1 - ndf_mult_prev = 1 - for n in range(1, n_layers): # gradually increase the number of filters - ndf_mult_prev = ndf_mult - ndf_mult = min(2 ** n, 8) - layers += [ - nn.Conv2d(ndf * ndf_mult_prev, ndf * ndf_mult, kernel_size=4, stride=2, padding=1, bias=False), - nn.BatchNorm2d(ndf * ndf_mult), - nn.LeakyReLU(0.2, True) - ] - - ndf_mult_prev = ndf_mult - ndf_mult = min(2 ** n_layers, 8) - - layers += [ - nn.Conv2d(ndf * ndf_mult_prev, ndf * ndf_mult, kernel_size=4, stride=1, padding=1, bias=False), - nn.BatchNorm2d(ndf * ndf_mult), - nn.LeakyReLU(0.2, True) - ] - - layers += [ - nn.Conv2d(ndf * ndf_mult, 1, kernel_size=4, stride=1, padding=1)] # output 1 channel prediction map - self.main = nn.Sequential(*layers) - - if model_path is not None: - chkpt = torch.load(model_path, map_location='cpu') - if 'params_d' in chkpt: - self.load_state_dict(torch.load(model_path, map_location='cpu')['params_d']) - elif 'params' in chkpt: - self.load_state_dict(torch.load(model_path, map_location='cpu')['params']) - else: - raise ValueError('Wrong params!') - - def forward(self, x): - return self.main(x) |