diff options
author | AUTOMATIC1111 <16777216c@gmail.com> | 2023-08-03 04:18:55 +0000 |
---|---|---|
committer | AUTOMATIC1111 <16777216c@gmail.com> | 2023-08-03 04:18:55 +0000 |
commit | fca42949a3593c5a2f646e30cc99be2c02566aa2 (patch) | |
tree | 6759c76a2c7e713a258c78f91111f2439dcfb9f6 /modules/devices.py | |
parent | 84b6fcd02ca6d6ab48c4b6be4bb8724b1c2e7014 (diff) | |
download | stable-diffusion-webui-gfx803-fca42949a3593c5a2f646e30cc99be2c02566aa2.tar.gz stable-diffusion-webui-gfx803-fca42949a3593c5a2f646e30cc99be2c02566aa2.tar.bz2 stable-diffusion-webui-gfx803-fca42949a3593c5a2f646e30cc99be2c02566aa2.zip |
rework torchsde._brownian.brownian_interval replacement to use device.randn_local and respect the NV setting.
Diffstat (limited to 'modules/devices.py')
-rw-r--r-- | modules/devices.py | 44 |
1 files changed, 38 insertions, 6 deletions
diff --git a/modules/devices.py b/modules/devices.py index b58776d8..00a00b18 100644 --- a/modules/devices.py +++ b/modules/devices.py @@ -71,14 +71,17 @@ def enable_tf32(): torch.backends.cudnn.allow_tf32 = True - errors.run(enable_tf32, "Enabling TF32") -cpu = torch.device("cpu") -device = device_interrogate = device_gfpgan = device_esrgan = device_codeformer = None -dtype = torch.float16 -dtype_vae = torch.float16 -dtype_unet = torch.float16 +cpu: torch.device = torch.device("cpu") +device: torch.device = None +device_interrogate: torch.device = None +device_gfpgan: torch.device = None +device_esrgan: torch.device = None +device_codeformer: torch.device = None +dtype: torch.dtype = torch.float16 +dtype_vae: torch.dtype = torch.float16 +dtype_unet: torch.dtype = torch.float16 unet_needs_upcast = False @@ -94,6 +97,10 @@ nv_rng = None def randn(seed, shape): + """Generate a tensor with random numbers from a normal distribution using seed. + + Uses the seed parameter to set the global torch seed; to generate more with that seed, use randn_like/randn_without_seed.""" + from modules.shared import opts manual_seed(seed) @@ -107,7 +114,27 @@ def randn(seed, shape): return torch.randn(shape, device=device) +def randn_local(seed, shape): + """Generate a tensor with random numbers from a normal distribution using seed. + + Does not change the global random number generator. You can only generate the seed's first tensor using this function.""" + + from modules.shared import opts + + if opts.randn_source == "NV": + rng = rng_philox.Generator(seed) + return torch.asarray(rng.randn(shape), device=device) + + local_device = cpu if opts.randn_source == "CPU" or device.type == 'mps' else device + local_generator = torch.Generator(local_device).manual_seed(int(seed)) + return torch.randn(shape, device=local_device, generator=local_generator).to(device) + + def randn_like(x): + """Generate a tensor with random numbers from a normal distribution using the previously initialized genrator. + + Use either randn() or manual_seed() to initialize the generator.""" + from modules.shared import opts if opts.randn_source == "NV": @@ -120,6 +147,10 @@ def randn_like(x): def randn_without_seed(shape): + """Generate a tensor with random numbers from a normal distribution using the previously initialized genrator. + + Use either randn() or manual_seed() to initialize the generator.""" + from modules.shared import opts if opts.randn_source == "NV": @@ -132,6 +163,7 @@ def randn_without_seed(shape): def manual_seed(seed): + """Set up a global random number generator using the specified seed.""" from modules.shared import opts if opts.randn_source == "NV": |