diff options
author | AUTOMATIC1111 <16777216c@gmail.com> | 2023-01-04 15:57:14 +0000 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-01-04 15:57:14 +0000 |
commit | 32547f2721c92794779e6ff9fb325243d5857cae (patch) | |
tree | d4d5f1a9705e59eef5029cc1be3bff57fbd389c2 /modules/esrgam_model_arch.py | |
parent | fe6e2362e8fa5d739de6997ab155a26686d20a49 (diff) | |
parent | 3dae545a03f5102ba5d9c3f27bb6241824c5a916 (diff) | |
download | stable-diffusion-webui-gfx803-32547f2721c92794779e6ff9fb325243d5857cae.tar.gz stable-diffusion-webui-gfx803-32547f2721c92794779e6ff9fb325243d5857cae.tar.bz2 stable-diffusion-webui-gfx803-32547f2721c92794779e6ff9fb325243d5857cae.zip |
Merge branch 'master' into xygrid_infotext_improvements
Diffstat (limited to 'modules/esrgam_model_arch.py')
-rw-r--r-- | modules/esrgam_model_arch.py | 80 |
1 files changed, 0 insertions, 80 deletions
diff --git a/modules/esrgam_model_arch.py b/modules/esrgam_model_arch.py deleted file mode 100644 index e413d36e..00000000 --- a/modules/esrgam_model_arch.py +++ /dev/null @@ -1,80 +0,0 @@ -# this file is taken from https://github.com/xinntao/ESRGAN
-
-import functools
-import torch
-import torch.nn as nn
-import torch.nn.functional as F
-
-
-def make_layer(block, n_layers):
- layers = []
- for _ in range(n_layers):
- layers.append(block())
- return nn.Sequential(*layers)
-
-
-class ResidualDenseBlock_5C(nn.Module):
- def __init__(self, nf=64, gc=32, bias=True):
- super(ResidualDenseBlock_5C, self).__init__()
- # gc: growth channel, i.e. intermediate channels
- self.conv1 = nn.Conv2d(nf, gc, 3, 1, 1, bias=bias)
- self.conv2 = nn.Conv2d(nf + gc, gc, 3, 1, 1, bias=bias)
- self.conv3 = nn.Conv2d(nf + 2 * gc, gc, 3, 1, 1, bias=bias)
- self.conv4 = nn.Conv2d(nf + 3 * gc, gc, 3, 1, 1, bias=bias)
- self.conv5 = nn.Conv2d(nf + 4 * gc, nf, 3, 1, 1, bias=bias)
- self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
-
- # initialization
- # mutil.initialize_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)
-
- def forward(self, x):
- x1 = self.lrelu(self.conv1(x))
- x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
- x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
- x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
- x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
- return x5 * 0.2 + x
-
-
-class RRDB(nn.Module):
- '''Residual in Residual Dense Block'''
-
- def __init__(self, nf, gc=32):
- super(RRDB, self).__init__()
- self.RDB1 = ResidualDenseBlock_5C(nf, gc)
- self.RDB2 = ResidualDenseBlock_5C(nf, gc)
- self.RDB3 = ResidualDenseBlock_5C(nf, gc)
-
- def forward(self, x):
- out = self.RDB1(x)
- out = self.RDB2(out)
- out = self.RDB3(out)
- return out * 0.2 + x
-
-
-class RRDBNet(nn.Module):
- def __init__(self, in_nc, out_nc, nf, nb, gc=32):
- super(RRDBNet, self).__init__()
- RRDB_block_f = functools.partial(RRDB, nf=nf, gc=gc)
-
- self.conv_first = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
- self.RRDB_trunk = make_layer(RRDB_block_f, nb)
- self.trunk_conv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
- #### upsampling
- self.upconv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
- self.upconv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
- self.HRconv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
- self.conv_last = nn.Conv2d(nf, out_nc, 3, 1, 1, bias=True)
-
- self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
-
- def forward(self, x):
- fea = self.conv_first(x)
- trunk = self.trunk_conv(self.RRDB_trunk(fea))
- fea = fea + trunk
-
- fea = self.lrelu(self.upconv1(F.interpolate(fea, scale_factor=2, mode='nearest')))
- fea = self.lrelu(self.upconv2(F.interpolate(fea, scale_factor=2, mode='nearest')))
- out = self.conv_last(self.lrelu(self.HRconv(fea)))
-
- return out
|