diff options
author | 不会画画的中医不是好程序员 <yfszzx@gmail.com> | 2022-10-10 12:21:25 +0000 |
---|---|---|
committer | GitHub <noreply@github.com> | 2022-10-10 12:21:25 +0000 |
commit | 1e18a5ffcc439b72adaaf425c0b79f3acb34322e (patch) | |
tree | 01f9c73c02076694a9bc3c965875646473771db8 /modules/esrgan_model_arch.py | |
parent | 23f2989799ee3911d2959cfceb74b921f20c9a51 (diff) | |
parent | a3578233395e585e68c2118d3630cb2a961d4a36 (diff) | |
download | stable-diffusion-webui-gfx803-1e18a5ffcc439b72adaaf425c0b79f3acb34322e.tar.gz stable-diffusion-webui-gfx803-1e18a5ffcc439b72adaaf425c0b79f3acb34322e.tar.bz2 stable-diffusion-webui-gfx803-1e18a5ffcc439b72adaaf425c0b79f3acb34322e.zip |
Merge branch 'AUTOMATIC1111:master' into master
Diffstat (limited to 'modules/esrgan_model_arch.py')
-rw-r--r-- | modules/esrgan_model_arch.py | 80 |
1 files changed, 80 insertions, 0 deletions
diff --git a/modules/esrgan_model_arch.py b/modules/esrgan_model_arch.py new file mode 100644 index 00000000..e413d36e --- /dev/null +++ b/modules/esrgan_model_arch.py @@ -0,0 +1,80 @@ +# this file is taken from https://github.com/xinntao/ESRGAN
+
+import functools
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+
+def make_layer(block, n_layers):
+ layers = []
+ for _ in range(n_layers):
+ layers.append(block())
+ return nn.Sequential(*layers)
+
+
+class ResidualDenseBlock_5C(nn.Module):
+ def __init__(self, nf=64, gc=32, bias=True):
+ super(ResidualDenseBlock_5C, self).__init__()
+ # gc: growth channel, i.e. intermediate channels
+ self.conv1 = nn.Conv2d(nf, gc, 3, 1, 1, bias=bias)
+ self.conv2 = nn.Conv2d(nf + gc, gc, 3, 1, 1, bias=bias)
+ self.conv3 = nn.Conv2d(nf + 2 * gc, gc, 3, 1, 1, bias=bias)
+ self.conv4 = nn.Conv2d(nf + 3 * gc, gc, 3, 1, 1, bias=bias)
+ self.conv5 = nn.Conv2d(nf + 4 * gc, nf, 3, 1, 1, bias=bias)
+ self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
+
+ # initialization
+ # mutil.initialize_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)
+
+ def forward(self, x):
+ x1 = self.lrelu(self.conv1(x))
+ x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
+ x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
+ x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
+ x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
+ return x5 * 0.2 + x
+
+
+class RRDB(nn.Module):
+ '''Residual in Residual Dense Block'''
+
+ def __init__(self, nf, gc=32):
+ super(RRDB, self).__init__()
+ self.RDB1 = ResidualDenseBlock_5C(nf, gc)
+ self.RDB2 = ResidualDenseBlock_5C(nf, gc)
+ self.RDB3 = ResidualDenseBlock_5C(nf, gc)
+
+ def forward(self, x):
+ out = self.RDB1(x)
+ out = self.RDB2(out)
+ out = self.RDB3(out)
+ return out * 0.2 + x
+
+
+class RRDBNet(nn.Module):
+ def __init__(self, in_nc, out_nc, nf, nb, gc=32):
+ super(RRDBNet, self).__init__()
+ RRDB_block_f = functools.partial(RRDB, nf=nf, gc=gc)
+
+ self.conv_first = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
+ self.RRDB_trunk = make_layer(RRDB_block_f, nb)
+ self.trunk_conv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
+ #### upsampling
+ self.upconv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
+ self.upconv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
+ self.HRconv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
+ self.conv_last = nn.Conv2d(nf, out_nc, 3, 1, 1, bias=True)
+
+ self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
+
+ def forward(self, x):
+ fea = self.conv_first(x)
+ trunk = self.trunk_conv(self.RRDB_trunk(fea))
+ fea = fea + trunk
+
+ fea = self.lrelu(self.upconv1(F.interpolate(fea, scale_factor=2, mode='nearest')))
+ fea = self.lrelu(self.upconv2(F.interpolate(fea, scale_factor=2, mode='nearest')))
+ out = self.conv_last(self.lrelu(self.HRconv(fea)))
+
+ return out
|