aboutsummaryrefslogtreecommitdiffstats
path: root/modules/extras.py
diff options
context:
space:
mode:
authorAUTOMATIC <16777216c@gmail.com>2023-01-22 12:38:39 +0000
committerAUTOMATIC <16777216c@gmail.com>2023-01-22 12:38:39 +0000
commit68303c96e5ab31576a8238a24bf5b6191cf16ed1 (patch)
treeea342acc38fa77b71537d9004a9c83729ac92327 /modules/extras.py
parentc56b36712289020a98f0c77794b9045a251ecd55 (diff)
downloadstable-diffusion-webui-gfx803-68303c96e5ab31576a8238a24bf5b6191cf16ed1.tar.gz
stable-diffusion-webui-gfx803-68303c96e5ab31576a8238a24bf5b6191cf16ed1.tar.bz2
stable-diffusion-webui-gfx803-68303c96e5ab31576a8238a24bf5b6191cf16ed1.zip
split oversize extras.py to postprocessing.py
Diffstat (limited to 'modules/extras.py')
-rw-r--r--modules/extras.py217
1 files changed, 1 insertions, 216 deletions
diff --git a/modules/extras.py b/modules/extras.py
index 385430dc..f04ddfc2 100644
--- a/modules/extras.py
+++ b/modules/extras.py
@@ -1,231 +1,16 @@
-from __future__ import annotations
-import math
import os
import re
-import sys
-import traceback
import shutil
-import numpy as np
-from PIL import Image
import torch
import tqdm
-from typing import Callable, List, OrderedDict, Tuple
-from functools import partial
-from dataclasses import dataclass
-
-from modules import processing, shared, images, devices, sd_models, sd_samplers, sd_vae
-from modules.shared import opts
-import modules.gfpgan_model
+from modules import shared, images, sd_models, sd_vae
from modules.ui import plaintext_to_html
-import modules.codeformer_model
import gradio as gr
import safetensors.torch
-class LruCache(OrderedDict):
- @dataclass(frozen=True)
- class Key:
- image_hash: int
- info_hash: int
- args_hash: int
-
- @dataclass
- class Value:
- image: Image.Image
- info: str
-
- def __init__(self, max_size: int = 5, *args, **kwargs):
- super().__init__(*args, **kwargs)
- self._max_size = max_size
-
- def get(self, key: LruCache.Key) -> LruCache.Value:
- ret = super().get(key)
- if ret is not None:
- self.move_to_end(key) # Move to end of eviction list
- return ret
-
- def put(self, key: LruCache.Key, value: LruCache.Value) -> None:
- self[key] = value
- while len(self) > self._max_size:
- self.popitem(last=False)
-
-
-cached_images: LruCache = LruCache(max_size=5)
-
-
-def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool, save_output: bool = True):
- devices.torch_gc()
-
- shared.state.begin()
- shared.state.job = 'extras'
-
- imageArr = []
- # Also keep track of original file names
- imageNameArr = []
- outputs = []
-
- if extras_mode == 1:
- #convert file to pillow image
- for img in image_folder:
- image = Image.open(img)
- imageArr.append(image)
- imageNameArr.append(os.path.splitext(img.orig_name)[0])
- elif extras_mode == 2:
- assert not shared.cmd_opts.hide_ui_dir_config, '--hide-ui-dir-config option must be disabled'
-
- if input_dir == '':
- return outputs, "Please select an input directory.", ''
- image_list = shared.listfiles(input_dir)
- for img in image_list:
- try:
- image = Image.open(img)
- except Exception:
- continue
- imageArr.append(image)
- imageNameArr.append(img)
- else:
- imageArr.append(image)
- imageNameArr.append(None)
-
- if extras_mode == 2 and output_dir != '':
- outpath = output_dir
- else:
- outpath = opts.outdir_samples or opts.outdir_extras_samples
-
- # Extra operation definitions
-
- def run_gfpgan(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
- shared.state.job = 'extras-gfpgan'
- restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8))
- res = Image.fromarray(restored_img)
-
- if gfpgan_visibility < 1.0:
- res = Image.blend(image, res, gfpgan_visibility)
-
- info += f"GFPGAN visibility:{round(gfpgan_visibility, 2)}\n"
- return (res, info)
-
- def run_codeformer(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
- shared.state.job = 'extras-codeformer'
- restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight)
- res = Image.fromarray(restored_img)
-
- if codeformer_visibility < 1.0:
- res = Image.blend(image, res, codeformer_visibility)
-
- info += f"CodeFormer w: {round(codeformer_weight, 2)}, CodeFormer visibility:{round(codeformer_visibility, 2)}\n"
- return (res, info)
-
- def upscale(image, scaler_index, resize, mode, resize_w, resize_h, crop):
- shared.state.job = 'extras-upscale'
- upscaler = shared.sd_upscalers[scaler_index]
- res = upscaler.scaler.upscale(image, resize, upscaler.data_path)
- if mode == 1 and crop:
- cropped = Image.new("RGB", (resize_w, resize_h))
- cropped.paste(res, box=(resize_w // 2 - res.width // 2, resize_h // 2 - res.height // 2))
- res = cropped
- return res
-
- def run_prepare_crop(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
- # Actual crop happens in run_upscalers_blend, this just sets upscaling_resize and adds info text
- nonlocal upscaling_resize
- if resize_mode == 1:
- upscaling_resize = max(upscaling_resize_w/image.width, upscaling_resize_h/image.height)
- crop_info = " (crop)" if upscaling_crop else ""
- info += f"Resize to: {upscaling_resize_w:g}x{upscaling_resize_h:g}{crop_info}\n"
- return (image, info)
-
- @dataclass
- class UpscaleParams:
- upscaler_idx: int
- blend_alpha: float
-
- def run_upscalers_blend(params: List[UpscaleParams], image: Image.Image, info: str) -> Tuple[Image.Image, str]:
- blended_result: Image.Image = None
- image_hash: str = hash(np.array(image.getdata()).tobytes())
- for upscaler in params:
- upscale_args = (upscaler.upscaler_idx, upscaling_resize, resize_mode,
- upscaling_resize_w, upscaling_resize_h, upscaling_crop)
- cache_key = LruCache.Key(image_hash=image_hash,
- info_hash=hash(info),
- args_hash=hash(upscale_args))
- cached_entry = cached_images.get(cache_key)
- if cached_entry is None:
- res = upscale(image, *upscale_args)
- info += f"Upscale: {round(upscaling_resize, 3)}, visibility: {upscaler.blend_alpha}, model:{shared.sd_upscalers[upscaler.upscaler_idx].name}\n"
- cached_images.put(cache_key, LruCache.Value(image=res, info=info))
- else:
- res, info = cached_entry.image, cached_entry.info
-
- if blended_result is None:
- blended_result = res
- else:
- blended_result = Image.blend(blended_result, res, upscaler.blend_alpha)
- return (blended_result, info)
-
- # Build a list of operations to run
- facefix_ops: List[Callable] = []
- facefix_ops += [run_gfpgan] if gfpgan_visibility > 0 else []
- facefix_ops += [run_codeformer] if codeformer_visibility > 0 else []
-
- upscale_ops: List[Callable] = []
- upscale_ops += [run_prepare_crop] if resize_mode == 1 else []
-
- if upscaling_resize != 0:
- step_params: List[UpscaleParams] = []
- step_params.append(UpscaleParams(upscaler_idx=extras_upscaler_1, blend_alpha=1.0))
- if extras_upscaler_2 != 0 and extras_upscaler_2_visibility > 0:
- step_params.append(UpscaleParams(upscaler_idx=extras_upscaler_2, blend_alpha=extras_upscaler_2_visibility))
-
- upscale_ops.append(partial(run_upscalers_blend, step_params))
-
- extras_ops: List[Callable] = (upscale_ops + facefix_ops) if upscale_first else (facefix_ops + upscale_ops)
-
- for image, image_name in zip(imageArr, imageNameArr):
- if image is None:
- return outputs, "Please select an input image.", ''
-
- shared.state.textinfo = f'Processing image {image_name}'
-
- existing_pnginfo = image.info or {}
-
- image = image.convert("RGB")
- info = ""
- # Run each operation on each image
- for op in extras_ops:
- image, info = op(image, info)
-
- if opts.use_original_name_batch and image_name is not None:
- basename = os.path.splitext(os.path.basename(image_name))[0]
- else:
- basename = ''
-
- if opts.enable_pnginfo: # append info before save
- image.info = existing_pnginfo
- image.info["extras"] = info
-
- if save_output:
- # Add upscaler name as a suffix.
- suffix = f"-{shared.sd_upscalers[extras_upscaler_1].name}" if shared.opts.use_upscaler_name_as_suffix else ""
- # Add second upscaler if applicable.
- if suffix and extras_upscaler_2 and extras_upscaler_2_visibility:
- suffix += f"-{shared.sd_upscalers[extras_upscaler_2].name}"
-
- images.save_image(image, path=outpath, basename=basename, seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
- no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=None, suffix=suffix)
-
- if extras_mode != 2 or show_extras_results :
- outputs.append(image)
-
- devices.torch_gc()
-
- return outputs, plaintext_to_html(info), ''
-
-def clear_cache():
- cached_images.clear()
-
def run_pnginfo(image):
if image is None: