aboutsummaryrefslogtreecommitdiffstats
path: root/modules/extras.py
diff options
context:
space:
mode:
authorAUTOMATIC1111 <16777216c@gmail.com>2022-09-27 06:59:37 +0000
committerGitHub <noreply@github.com>2022-09-27 06:59:37 +0000
commita9dc307a210780546b970c68773f1ba39ac594c2 (patch)
tree581bfbf872ec5f2ea9b999dcef1456b1d30105b9 /modules/extras.py
parentdbe072dcffd20c1d17d25b0cdde765cb9e7c74aa (diff)
parentdc11748dea36e7618a7cdad55526fa9d6faaa6cf (diff)
downloadstable-diffusion-webui-gfx803-a9dc307a210780546b970c68773f1ba39ac594c2.tar.gz
stable-diffusion-webui-gfx803-a9dc307a210780546b970c68773f1ba39ac594c2.tar.bz2
stable-diffusion-webui-gfx803-a9dc307a210780546b970c68773f1ba39ac594c2.zip
Merge pull request #1066 from moorehousew/master
Add support for checkpoint merging
Diffstat (limited to 'modules/extras.py')
-rw-r--r--modules/extras.py39
1 files changed, 39 insertions, 0 deletions
diff --git a/modules/extras.py b/modules/extras.py
index 382ffa7d..a9788e7d 100644
--- a/modules/extras.py
+++ b/modules/extras.py
@@ -3,6 +3,8 @@ import os
import numpy as np
from PIL import Image
+import torch
+
from modules import processing, shared, images, devices
from modules.shared import opts
import modules.gfpgan_model
@@ -135,3 +137,40 @@ def run_pnginfo(image):
info = f"<div><p>{message}<p></div>"
return '', geninfo, info
+
+
+def run_modelmerger(modelname_0, modelname_1, interp_method, interp_amount):
+ # Linear interpolation (https://en.wikipedia.org/wiki/Linear_interpolation)
+ def weighted_sum(theta0, theta1, alpha):
+ return ((1 - alpha) * theta0) + (alpha * theta1)
+
+ # Smoothstep (https://en.wikipedia.org/wiki/Smoothstep)
+ def sigmoid(theta0, theta1, alpha):
+ alpha = alpha * alpha * (3 - (2 * alpha))
+ return theta0 + ((theta1 - theta0) * alpha)
+
+ model_0 = torch.load('models/' + modelname_0 + '.ckpt')
+ model_1 = torch.load('models/' + modelname_1 + '.ckpt')
+
+ theta_0 = model_0['state_dict']
+ theta_1 = model_1['state_dict']
+ theta_func = weighted_sum
+
+ if interp_method == "Weighted Sum":
+ theta_func = weighted_sum
+ if interp_method == "Sigmoid":
+ theta_func = sigmoid
+
+ for key in theta_0.keys():
+ if 'model' in key and key in theta_1:
+ theta_0[key] = theta_func(theta_0[key], theta_1[key], interp_amount)
+
+ for key in theta_1.keys():
+ if 'model' in key and key not in theta_0:
+ theta_0[key] = theta_1[key]
+
+ output_modelname = 'models/' + modelname_0 + '-' + modelname_1 + '-merged.ckpt';
+
+ torch.save(model_0, output_modelname)
+
+ return "<p>Model saved to " + output_modelname + "</p>"