diff options
author | AUTOMATIC <16777216c@gmail.com> | 2022-10-11 11:53:02 +0000 |
---|---|---|
committer | AUTOMATIC <16777216c@gmail.com> | 2022-10-11 11:53:02 +0000 |
commit | 530103b586109c11fd068eb70ef09503ec6a4caf (patch) | |
tree | 010cc4b82c7f0ccd2a9901fb312459d85ac4deb8 /modules/hypernetwork/hypernetwork.py | |
parent | 5de806184f6687e46cf936b92055146dc6cf2994 (diff) | |
download | stable-diffusion-webui-gfx803-530103b586109c11fd068eb70ef09503ec6a4caf.tar.gz stable-diffusion-webui-gfx803-530103b586109c11fd068eb70ef09503ec6a4caf.tar.bz2 stable-diffusion-webui-gfx803-530103b586109c11fd068eb70ef09503ec6a4caf.zip |
fixes related to merge
Diffstat (limited to 'modules/hypernetwork/hypernetwork.py')
-rw-r--r-- | modules/hypernetwork/hypernetwork.py | 74 |
1 files changed, 45 insertions, 29 deletions
diff --git a/modules/hypernetwork/hypernetwork.py b/modules/hypernetwork/hypernetwork.py index a3d6a47e..aa701bda 100644 --- a/modules/hypernetwork/hypernetwork.py +++ b/modules/hypernetwork/hypernetwork.py @@ -26,10 +26,11 @@ class HypernetworkModule(torch.nn.Module): if state_dict is not None:
self.load_state_dict(state_dict, strict=True)
else:
- self.linear1.weight.data.fill_(0.0001)
- self.linear1.bias.data.fill_(0.0001)
- self.linear2.weight.data.fill_(0.0001)
- self.linear2.bias.data.fill_(0.0001)
+
+ self.linear1.weight.data.normal_(mean=0.0, std=0.01)
+ self.linear1.bias.data.zero_()
+ self.linear2.weight.data.normal_(mean=0.0, std=0.01)
+ self.linear2.bias.data.zero_()
self.to(devices.device)
@@ -92,41 +93,54 @@ class Hypernetwork: self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None)
-def load_hypernetworks(path):
+def list_hypernetworks(path):
res = {}
+ for filename in glob.iglob(os.path.join(path, '**/*.pt'), recursive=True):
+ name = os.path.splitext(os.path.basename(filename))[0]
+ res[name] = filename
+ return res
- for filename in glob.iglob(path + '**/*.pt', recursive=True):
+
+def load_hypernetwork(filename):
+ path = shared.hypernetworks.get(filename, None)
+ if path is not None:
+ print(f"Loading hypernetwork {filename}")
try:
- hn = Hypernetwork()
- hn.load(filename)
- res[hn.name] = hn
+ shared.loaded_hypernetwork = Hypernetwork()
+ shared.loaded_hypernetwork.load(path)
+
except Exception:
- print(f"Error loading hypernetwork {filename}", file=sys.stderr)
+ print(f"Error loading hypernetwork {path}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
+ else:
+ if shared.loaded_hypernetwork is not None:
+ print(f"Unloading hypernetwork")
- return res
+ shared.loaded_hypernetwork = None
-def attention_CrossAttention_forward(self, x, context=None, mask=None):
- h = self.heads
+def apply_hypernetwork(hypernetwork, context, layer=None):
+ hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
- q = self.to_q(x)
- context = default(context, x)
+ if hypernetwork_layers is None:
+ return context, context
- hypernetwork_layers = (shared.hypernetwork.layers if shared.hypernetwork is not None else {}).get(context.shape[2], None)
+ if layer is not None:
+ layer.hyper_k = hypernetwork_layers[0]
+ layer.hyper_v = hypernetwork_layers[1]
- if hypernetwork_layers is not None:
- hypernetwork_k, hypernetwork_v = hypernetwork_layers
+ context_k = hypernetwork_layers[0](context)
+ context_v = hypernetwork_layers[1](context)
+ return context_k, context_v
- self.hypernetwork_k = hypernetwork_k
- self.hypernetwork_v = hypernetwork_v
- context_k = hypernetwork_k(context)
- context_v = hypernetwork_v(context)
- else:
- context_k = context
- context_v = context
+def attention_CrossAttention_forward(self, x, context=None, mask=None):
+ h = self.heads
+
+ q = self.to_q(x)
+ context = default(context, x)
+ context_k, context_v = apply_hypernetwork(shared.loaded_hypernetwork, context, self)
k = self.to_k(context_k)
v = self.to_v(context_v)
@@ -151,7 +165,9 @@ def attention_CrossAttention_forward(self, x, context=None, mask=None): def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_image_prompt):
assert hypernetwork_name, 'embedding not selected'
- shared.hypernetwork = shared.hypernetworks[hypernetwork_name]
+ path = shared.hypernetworks.get(hypernetwork_name, None)
+ shared.loaded_hypernetwork = Hypernetwork()
+ shared.loaded_hypernetwork.load(path)
shared.state.textinfo = "Initializing hypernetwork training..."
shared.state.job_count = steps
@@ -176,9 +192,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
with torch.autocast("cuda"):
- ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, size=512, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file)
+ ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=1, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file)
- hypernetwork = shared.hypernetworks[hypernetwork_name]
+ hypernetwork = shared.loaded_hypernetwork
weights = hypernetwork.weights()
for weight in weights:
weight.requires_grad = True
@@ -194,7 +210,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, if ititial_step > steps:
return hypernetwork, filename
- pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step)
+ pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
for i, (x, text) in pbar:
hypernetwork.step = i + ititial_step
|