aboutsummaryrefslogtreecommitdiffstats
path: root/modules/hypernetwork/hypernetwork.py
diff options
context:
space:
mode:
authorAUTOMATIC <16777216c@gmail.com>2022-10-11 12:51:22 +0000
committerAUTOMATIC <16777216c@gmail.com>2022-10-11 12:51:30 +0000
commit873efeed49bb5197a42da18272115b326c5d68f3 (patch)
tree519f2766d84d67b46230f48e862c9ee28d9d9e03 /modules/hypernetwork/hypernetwork.py
parenta004d1a855311b0d7ff2976a4e31b0247ad9d1f6 (diff)
downloadstable-diffusion-webui-gfx803-873efeed49bb5197a42da18272115b326c5d68f3.tar.gz
stable-diffusion-webui-gfx803-873efeed49bb5197a42da18272115b326c5d68f3.tar.bz2
stable-diffusion-webui-gfx803-873efeed49bb5197a42da18272115b326c5d68f3.zip
rename hypernetwork dir to hypernetworks to prevent clash with an old filename that people who use zip instead of git clone will have
Diffstat (limited to 'modules/hypernetwork/hypernetwork.py')
-rw-r--r--modules/hypernetwork/hypernetwork.py283
1 files changed, 0 insertions, 283 deletions
diff --git a/modules/hypernetwork/hypernetwork.py b/modules/hypernetwork/hypernetwork.py
deleted file mode 100644
index aa701bda..00000000
--- a/modules/hypernetwork/hypernetwork.py
+++ /dev/null
@@ -1,283 +0,0 @@
-import datetime
-import glob
-import html
-import os
-import sys
-import traceback
-import tqdm
-
-import torch
-
-from ldm.util import default
-from modules import devices, shared, processing, sd_models
-import torch
-from torch import einsum
-from einops import rearrange, repeat
-import modules.textual_inversion.dataset
-
-
-class HypernetworkModule(torch.nn.Module):
- def __init__(self, dim, state_dict=None):
- super().__init__()
-
- self.linear1 = torch.nn.Linear(dim, dim * 2)
- self.linear2 = torch.nn.Linear(dim * 2, dim)
-
- if state_dict is not None:
- self.load_state_dict(state_dict, strict=True)
- else:
-
- self.linear1.weight.data.normal_(mean=0.0, std=0.01)
- self.linear1.bias.data.zero_()
- self.linear2.weight.data.normal_(mean=0.0, std=0.01)
- self.linear2.bias.data.zero_()
-
- self.to(devices.device)
-
- def forward(self, x):
- return x + (self.linear2(self.linear1(x)))
-
-
-class Hypernetwork:
- filename = None
- name = None
-
- def __init__(self, name=None):
- self.filename = None
- self.name = name
- self.layers = {}
- self.step = 0
- self.sd_checkpoint = None
- self.sd_checkpoint_name = None
-
- for size in [320, 640, 768, 1280]:
- self.layers[size] = (HypernetworkModule(size), HypernetworkModule(size))
-
- def weights(self):
- res = []
-
- for k, layers in self.layers.items():
- for layer in layers:
- layer.train()
- res += [layer.linear1.weight, layer.linear1.bias, layer.linear2.weight, layer.linear2.bias]
-
- return res
-
- def save(self, filename):
- state_dict = {}
-
- for k, v in self.layers.items():
- state_dict[k] = (v[0].state_dict(), v[1].state_dict())
-
- state_dict['step'] = self.step
- state_dict['name'] = self.name
- state_dict['sd_checkpoint'] = self.sd_checkpoint
- state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
-
- torch.save(state_dict, filename)
-
- def load(self, filename):
- self.filename = filename
- if self.name is None:
- self.name = os.path.splitext(os.path.basename(filename))[0]
-
- state_dict = torch.load(filename, map_location='cpu')
-
- for size, sd in state_dict.items():
- if type(size) == int:
- self.layers[size] = (HypernetworkModule(size, sd[0]), HypernetworkModule(size, sd[1]))
-
- self.name = state_dict.get('name', self.name)
- self.step = state_dict.get('step', 0)
- self.sd_checkpoint = state_dict.get('sd_checkpoint', None)
- self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None)
-
-
-def list_hypernetworks(path):
- res = {}
- for filename in glob.iglob(os.path.join(path, '**/*.pt'), recursive=True):
- name = os.path.splitext(os.path.basename(filename))[0]
- res[name] = filename
- return res
-
-
-def load_hypernetwork(filename):
- path = shared.hypernetworks.get(filename, None)
- if path is not None:
- print(f"Loading hypernetwork {filename}")
- try:
- shared.loaded_hypernetwork = Hypernetwork()
- shared.loaded_hypernetwork.load(path)
-
- except Exception:
- print(f"Error loading hypernetwork {path}", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
- else:
- if shared.loaded_hypernetwork is not None:
- print(f"Unloading hypernetwork")
-
- shared.loaded_hypernetwork = None
-
-
-def apply_hypernetwork(hypernetwork, context, layer=None):
- hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
-
- if hypernetwork_layers is None:
- return context, context
-
- if layer is not None:
- layer.hyper_k = hypernetwork_layers[0]
- layer.hyper_v = hypernetwork_layers[1]
-
- context_k = hypernetwork_layers[0](context)
- context_v = hypernetwork_layers[1](context)
- return context_k, context_v
-
-
-def attention_CrossAttention_forward(self, x, context=None, mask=None):
- h = self.heads
-
- q = self.to_q(x)
- context = default(context, x)
-
- context_k, context_v = apply_hypernetwork(shared.loaded_hypernetwork, context, self)
- k = self.to_k(context_k)
- v = self.to_v(context_v)
-
- q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
-
- sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
-
- if mask is not None:
- mask = rearrange(mask, 'b ... -> b (...)')
- max_neg_value = -torch.finfo(sim.dtype).max
- mask = repeat(mask, 'b j -> (b h) () j', h=h)
- sim.masked_fill_(~mask, max_neg_value)
-
- # attention, what we cannot get enough of
- attn = sim.softmax(dim=-1)
-
- out = einsum('b i j, b j d -> b i d', attn, v)
- out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
- return self.to_out(out)
-
-
-def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_image_prompt):
- assert hypernetwork_name, 'embedding not selected'
-
- path = shared.hypernetworks.get(hypernetwork_name, None)
- shared.loaded_hypernetwork = Hypernetwork()
- shared.loaded_hypernetwork.load(path)
-
- shared.state.textinfo = "Initializing hypernetwork training..."
- shared.state.job_count = steps
-
- filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
-
- log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), hypernetwork_name)
-
- if save_hypernetwork_every > 0:
- hypernetwork_dir = os.path.join(log_directory, "hypernetworks")
- os.makedirs(hypernetwork_dir, exist_ok=True)
- else:
- hypernetwork_dir = None
-
- if create_image_every > 0:
- images_dir = os.path.join(log_directory, "images")
- os.makedirs(images_dir, exist_ok=True)
- else:
- images_dir = None
-
- cond_model = shared.sd_model.cond_stage_model
-
- shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
- with torch.autocast("cuda"):
- ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=1, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file)
-
- hypernetwork = shared.loaded_hypernetwork
- weights = hypernetwork.weights()
- for weight in weights:
- weight.requires_grad = True
-
- optimizer = torch.optim.AdamW(weights, lr=learn_rate)
-
- losses = torch.zeros((32,))
-
- last_saved_file = "<none>"
- last_saved_image = "<none>"
-
- ititial_step = hypernetwork.step or 0
- if ititial_step > steps:
- return hypernetwork, filename
-
- pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
- for i, (x, text) in pbar:
- hypernetwork.step = i + ititial_step
-
- if hypernetwork.step > steps:
- break
-
- if shared.state.interrupted:
- break
-
- with torch.autocast("cuda"):
- c = cond_model([text])
-
- x = x.to(devices.device)
- loss = shared.sd_model(x.unsqueeze(0), c)[0]
- del x
-
- losses[hypernetwork.step % losses.shape[0]] = loss.item()
-
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
-
- pbar.set_description(f"loss: {losses.mean():.7f}")
-
- if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0:
- last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name}-{hypernetwork.step}.pt')
- hypernetwork.save(last_saved_file)
-
- if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
- last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png')
-
- preview_text = text if preview_image_prompt == "" else preview_image_prompt
-
- p = processing.StableDiffusionProcessingTxt2Img(
- sd_model=shared.sd_model,
- prompt=preview_text,
- steps=20,
- do_not_save_grid=True,
- do_not_save_samples=True,
- )
-
- processed = processing.process_images(p)
- image = processed.images[0]
-
- shared.state.current_image = image
- image.save(last_saved_image)
-
- last_saved_image += f", prompt: {preview_text}"
-
- shared.state.job_no = hypernetwork.step
-
- shared.state.textinfo = f"""
-<p>
-Loss: {losses.mean():.7f}<br/>
-Step: {hypernetwork.step}<br/>
-Last prompt: {html.escape(text)}<br/>
-Last saved embedding: {html.escape(last_saved_file)}<br/>
-Last saved image: {html.escape(last_saved_image)}<br/>
-</p>
-"""
-
- checkpoint = sd_models.select_checkpoint()
-
- hypernetwork.sd_checkpoint = checkpoint.hash
- hypernetwork.sd_checkpoint_name = checkpoint.model_name
- hypernetwork.save(filename)
-
- return hypernetwork, filename
-
-