diff options
author | AUTOMATIC <16777216c@gmail.com> | 2023-01-09 20:35:40 +0000 |
---|---|---|
committer | AUTOMATIC <16777216c@gmail.com> | 2023-01-09 20:35:40 +0000 |
commit | 1fbb6f9ebe48326a3b12ecf611105dbc4a46891e (patch) | |
tree | ad082cdd66204bb073bd4b2f86c032a740ff0fc2 /modules/hypernetworks/hypernetwork.py | |
parent | 43bb5190fc9e7ae479a5dc6640be202c9a71e464 (diff) | |
download | stable-diffusion-webui-gfx803-1fbb6f9ebe48326a3b12ecf611105dbc4a46891e.tar.gz stable-diffusion-webui-gfx803-1fbb6f9ebe48326a3b12ecf611105dbc4a46891e.tar.bz2 stable-diffusion-webui-gfx803-1fbb6f9ebe48326a3b12ecf611105dbc4a46891e.zip |
make a dropdown for prompt template selection
Diffstat (limited to 'modules/hypernetworks/hypernetwork.py')
-rw-r--r-- | modules/hypernetworks/hypernetwork.py | 7 |
1 files changed, 5 insertions, 2 deletions
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 32c67ccc..ea3f1db9 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -24,6 +24,7 @@ from statistics import stdev, mean optimizer_dict = {optim_name : cls_obj for optim_name, cls_obj in inspect.getmembers(torch.optim, inspect.isclass) if optim_name != "Optimizer"}
+
class HypernetworkModule(torch.nn.Module):
multiplier = 1.0
activation_dict = {
@@ -403,13 +404,15 @@ def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, shared.reload_hypernetworks()
-def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, varsize, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
+def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, varsize, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every, save_hypernetwork_every, template_filename, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
# images allows training previews to have infotext. Importing it at the top causes a circular import problem.
from modules import images
save_hypernetwork_every = save_hypernetwork_every or 0
create_image_every = create_image_every or 0
- textual_inversion.validate_train_inputs(hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, template_file, steps, save_hypernetwork_every, create_image_every, log_directory, name="hypernetwork")
+ template_file = textual_inversion.textual_inversion_templates.get(template_filename, None)
+ textual_inversion.validate_train_inputs(hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, template_file, template_filename, steps, save_hypernetwork_every, create_image_every, log_directory, name="hypernetwork")
+ template_file = template_file.path
path = shared.hypernetworks.get(hypernetwork_name, None)
shared.loaded_hypernetwork = Hypernetwork()
|