diff options
author | AUTOMATIC1111 <16777216c@gmail.com> | 2023-05-10 18:24:18 +0000 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-05-10 18:24:18 +0000 |
commit | 5abecea34cd98537f006c5e9a197acd1fe9db023 (patch) | |
tree | 98248bc21aa4ad9715205f0a65a654532c6cfcc0 /modules/hypernetworks/hypernetwork.py | |
parent | f5ea1e9d928e0d45b3ebcd8ddd1cacbc6a96e184 (diff) | |
parent | 3ec7b705c78b7aca9569c92a419837352c7a4ec6 (diff) | |
download | stable-diffusion-webui-gfx803-5abecea34cd98537f006c5e9a197acd1fe9db023.tar.gz stable-diffusion-webui-gfx803-5abecea34cd98537f006c5e9a197acd1fe9db023.tar.bz2 stable-diffusion-webui-gfx803-5abecea34cd98537f006c5e9a197acd1fe9db023.zip |
Merge pull request #10259 from AUTOMATIC1111/ruff
Ruff
Diffstat (limited to 'modules/hypernetworks/hypernetwork.py')
-rw-r--r-- | modules/hypernetworks/hypernetwork.py | 17 |
1 files changed, 8 insertions, 9 deletions
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 1fc49537..38ef074f 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -1,4 +1,3 @@ -import csv
import datetime
import glob
import html
@@ -18,7 +17,7 @@ from modules.textual_inversion.learn_schedule import LearnRateScheduler from torch import einsum
from torch.nn.init import normal_, xavier_normal_, xavier_uniform_, kaiming_normal_, kaiming_uniform_, zeros_
-from collections import defaultdict, deque
+from collections import deque
from statistics import stdev, mean
@@ -178,34 +177,34 @@ class Hypernetwork: def weights(self):
res = []
- for k, layers in self.layers.items():
+ for layers in self.layers.values():
for layer in layers:
res += layer.parameters()
return res
def train(self, mode=True):
- for k, layers in self.layers.items():
+ for layers in self.layers.values():
for layer in layers:
layer.train(mode=mode)
for param in layer.parameters():
param.requires_grad = mode
def to(self, device):
- for k, layers in self.layers.items():
+ for layers in self.layers.values():
for layer in layers:
layer.to(device)
return self
def set_multiplier(self, multiplier):
- for k, layers in self.layers.items():
+ for layers in self.layers.values():
for layer in layers:
layer.multiplier = multiplier
return self
def eval(self):
- for k, layers in self.layers.items():
+ for layers in self.layers.values():
for layer in layers:
layer.eval()
for param in layer.parameters():
@@ -404,7 +403,7 @@ def attention_CrossAttention_forward(self, x, context=None, mask=None): k = self.to_k(context_k)
v = self.to_v(context_v)
- q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
+ q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q, k, v))
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
@@ -620,7 +619,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi try:
sd_hijack_checkpoint.add()
- for i in range((steps-initial_step) * gradient_step):
+ for _ in range((steps-initial_step) * gradient_step):
if scheduler.finished:
break
if shared.state.interrupted:
|