diff options
author | aria1th <35677394+aria1th@users.noreply.github.com> | 2023-01-15 18:02:54 +0000 |
---|---|---|
committer | aria1th <35677394+aria1th@users.noreply.github.com> | 2023-01-15 18:02:54 +0000 |
commit | 13445738d974edcca5ff2f4f8f3833c1f3433e5e (patch) | |
tree | fe3fdf4eecd32fc8a867b49f27e21cafc70993b6 /modules/hypernetworks | |
parent | 598f7fcd84f655dd204ad5e258dc1c41cc806cde (diff) | |
download | stable-diffusion-webui-gfx803-13445738d974edcca5ff2f4f8f3833c1f3433e5e.tar.gz stable-diffusion-webui-gfx803-13445738d974edcca5ff2f4f8f3833c1f3433e5e.tar.bz2 stable-diffusion-webui-gfx803-13445738d974edcca5ff2f4f8f3833c1f3433e5e.zip |
Fix tensorboard related functions
Diffstat (limited to 'modules/hypernetworks')
-rw-r--r-- | modules/hypernetworks/hypernetwork.py | 13 |
1 files changed, 6 insertions, 7 deletions
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 438e3e9f..c963fc40 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -561,7 +561,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi _loss_step = 0 #internal
# size = len(ds.indexes)
# loss_dict = defaultdict(lambda : deque(maxlen = 1024))
- loss_logging = []
+ loss_logging = deque(maxlen=len(ds) * 3) # this should be configurable parameter, this is 3 * epoch(dataset size)
# losses = torch.zeros((size,))
# previous_mean_losses = [0]
# previous_mean_loss = 0
@@ -602,7 +602,6 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi else:
c = stack_conds(batch.cond).to(devices.device, non_blocking=pin_memory)
loss = shared.sd_model(x, c)[0] / gradient_step
- loss_logging.append(loss.item())
del x
del c
@@ -612,7 +611,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi # go back until we reach gradient accumulation steps
if (j + 1) % gradient_step != 0:
continue
-
+ loss_logging.append(_loss_step)
if clip_grad:
clip_grad(weights, clip_grad_sched.learn_rate)
@@ -690,9 +689,6 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi processed = processing.process_images(p)
image = processed.images[0] if len(processed.images) > 0 else None
-
- if shared.opts.training_enable_tensorboard and shared.opts.training_tensorboard_save_images:
- textual_inversion.tensorboard_add_image(tensorboard_writer, f"Validation at epoch {epoch_num}", image, hypernetwork.step)
if unload:
shared.sd_model.cond_stage_model.to(devices.cpu)
@@ -703,7 +699,10 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi hypernetwork.train()
if image is not None:
shared.state.assign_current_image(image)
-
+ if shared.opts.training_enable_tensorboard and shared.opts.training_tensorboard_save_images:
+ textual_inversion.tensorboard_add_image(tensorboard_writer,
+ f"Validation at epoch {epoch_num}", image,
+ hypernetwork.step)
last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
last_saved_image += f", prompt: {preview_text}"
|