aboutsummaryrefslogtreecommitdiffstats
path: root/modules/hypernetworks
diff options
context:
space:
mode:
authorSilent <16026653+s-ilent@users.noreply.github.com>2022-10-19 05:44:33 +0000
committerAUTOMATIC1111 <16777216c@gmail.com>2022-10-19 06:13:28 +0000
commitda72becb13e4b750fbcb3d158c3f843311ef9938 (patch)
tree8f9146456e51fdbcb56753b996e9cbcad9d794da /modules/hypernetworks
parent5daf9cbb98cc13b5e4b74cd01ffa5146b5745bc9 (diff)
downloadstable-diffusion-webui-gfx803-da72becb13e4b750fbcb3d158c3f843311ef9938.tar.gz
stable-diffusion-webui-gfx803-da72becb13e4b750fbcb3d158c3f843311ef9938.tar.bz2
stable-diffusion-webui-gfx803-da72becb13e4b750fbcb3d158c3f843311ef9938.zip
Use training width/height when training hypernetworks.
Diffstat (limited to 'modules/hypernetworks')
-rw-r--r--modules/hypernetworks/hypernetwork.py4
1 files changed, 2 insertions, 2 deletions
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 4905710e..b8695fc1 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -196,7 +196,7 @@ def stack_conds(conds):
return torch.stack(conds)
-def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
+def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
assert hypernetwork_name, 'hypernetwork not selected'
path = shared.hypernetworks.get(hypernetwork_name, None)
@@ -225,7 +225,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
with torch.autocast("cuda"):
- ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size)
+ ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size)
if unload:
shared.sd_model.cond_stage_model.to(devices.cpu)