aboutsummaryrefslogtreecommitdiffstats
path: root/modules/hypernetworks
diff options
context:
space:
mode:
authorAUTOMATIC1111 <16777216c@gmail.com>2022-10-21 13:51:01 +0000
committerGitHub <noreply@github.com>2022-10-21 13:51:01 +0000
commitec37f8a45f316db8a20445aa80afd602457327b0 (patch)
tree20a59fe67602feeff3ba6e023f823a314294e78e /modules/hypernetworks
parent003d2c7fe427edde299274c9e0d5fa59734e7f7e (diff)
parent85cb5918ee7c97cafafe4149880ed82f1933d919 (diff)
downloadstable-diffusion-webui-gfx803-ec37f8a45f316db8a20445aa80afd602457327b0.tar.gz
stable-diffusion-webui-gfx803-ec37f8a45f316db8a20445aa80afd602457327b0.tar.bz2
stable-diffusion-webui-gfx803-ec37f8a45f316db8a20445aa80afd602457327b0.zip
Merge branch 'master' into features-to-readme
Diffstat (limited to 'modules/hypernetworks')
-rw-r--r--modules/hypernetworks/hypernetwork.py105
-rw-r--r--modules/hypernetworks/ui.py19
2 files changed, 99 insertions, 25 deletions
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 4905710e..b1a5d0c7 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -22,25 +22,67 @@ from modules.textual_inversion.learn_schedule import LearnRateScheduler
class HypernetworkModule(torch.nn.Module):
multiplier = 1.0
- def __init__(self, dim, state_dict=None):
+ def __init__(self, dim, state_dict=None, layer_structure=None, add_layer_norm=False, activation_func=None):
super().__init__()
- self.linear1 = torch.nn.Linear(dim, dim * 2)
- self.linear2 = torch.nn.Linear(dim * 2, dim)
+ assert layer_structure is not None, "layer_structure must not be None"
+ assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!"
+ assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!"
+
+ linears = []
+ for i in range(len(layer_structure) - 1):
+ linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
+
+ if activation_func == "relu":
+ linears.append(torch.nn.ReLU())
+ elif activation_func == "leakyrelu":
+ linears.append(torch.nn.LeakyReLU())
+ elif activation_func == 'linear' or activation_func is None:
+ pass
+ else:
+ raise RuntimeError(f'hypernetwork uses an unsupported activation function: {activation_func}')
+
+ if add_layer_norm:
+ linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
+
+ self.linear = torch.nn.Sequential(*linears)
if state_dict is not None:
- self.load_state_dict(state_dict, strict=True)
+ self.fix_old_state_dict(state_dict)
+ self.load_state_dict(state_dict)
else:
-
- self.linear1.weight.data.normal_(mean=0.0, std=0.01)
- self.linear1.bias.data.zero_()
- self.linear2.weight.data.normal_(mean=0.0, std=0.01)
- self.linear2.bias.data.zero_()
+ for layer in self.linear:
+ if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm:
+ layer.weight.data.normal_(mean=0.0, std=0.01)
+ layer.bias.data.zero_()
self.to(devices.device)
+ def fix_old_state_dict(self, state_dict):
+ changes = {
+ 'linear1.bias': 'linear.0.bias',
+ 'linear1.weight': 'linear.0.weight',
+ 'linear2.bias': 'linear.1.bias',
+ 'linear2.weight': 'linear.1.weight',
+ }
+
+ for fr, to in changes.items():
+ x = state_dict.get(fr, None)
+ if x is None:
+ continue
+
+ del state_dict[fr]
+ state_dict[to] = x
+
def forward(self, x):
- return x + (self.linear2(self.linear1(x))) * self.multiplier
+ return x + self.linear(x) * self.multiplier
+
+ def trainables(self):
+ layer_structure = []
+ for layer in self.linear:
+ if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm:
+ layer_structure += [layer.weight, layer.bias]
+ return layer_structure
def apply_strength(value=None):
@@ -51,16 +93,22 @@ class Hypernetwork:
filename = None
name = None
- def __init__(self, name=None, enable_sizes=None):
+ def __init__(self, name=None, enable_sizes=None, layer_structure=None, add_layer_norm=False, activation_func=None):
self.filename = None
self.name = name
self.layers = {}
self.step = 0
self.sd_checkpoint = None
self.sd_checkpoint_name = None
+ self.layer_structure = layer_structure
+ self.add_layer_norm = add_layer_norm
+ self.activation_func = activation_func
for size in enable_sizes or []:
- self.layers[size] = (HypernetworkModule(size), HypernetworkModule(size))
+ self.layers[size] = (
+ HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm, self.activation_func),
+ HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm, self.activation_func),
+ )
def weights(self):
res = []
@@ -68,7 +116,7 @@ class Hypernetwork:
for k, layers in self.layers.items():
for layer in layers:
layer.train()
- res += [layer.linear1.weight, layer.linear1.bias, layer.linear2.weight, layer.linear2.bias]
+ res += layer.trainables()
return res
@@ -80,6 +128,9 @@ class Hypernetwork:
state_dict['step'] = self.step
state_dict['name'] = self.name
+ state_dict['layer_structure'] = self.layer_structure
+ state_dict['is_layer_norm'] = self.add_layer_norm
+ state_dict['activation_func'] = self.activation_func
state_dict['sd_checkpoint'] = self.sd_checkpoint
state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
@@ -92,9 +143,16 @@ class Hypernetwork:
state_dict = torch.load(filename, map_location='cpu')
+ self.layer_structure = state_dict.get('layer_structure', [1, 2, 1])
+ self.add_layer_norm = state_dict.get('is_layer_norm', False)
+ self.activation_func = state_dict.get('activation_func', None)
+
for size, sd in state_dict.items():
if type(size) == int:
- self.layers[size] = (HypernetworkModule(size, sd[0]), HypernetworkModule(size, sd[1]))
+ self.layers[size] = (
+ HypernetworkModule(size, sd[0], self.layer_structure, self.add_layer_norm, self.activation_func),
+ HypernetworkModule(size, sd[1], self.layer_structure, self.add_layer_norm, self.activation_func),
+ )
self.name = state_dict.get('name', self.name)
self.step = state_dict.get('step', 0)
@@ -196,7 +254,11 @@ def stack_conds(conds):
return torch.stack(conds)
-def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
+
+def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
+ # images allows training previews to have infotext. Importing it at the top causes a circular import problem.
+ from modules import images
+
assert hypernetwork_name, 'hypernetwork not selected'
path = shared.hypernetworks.get(hypernetwork_name, None)
@@ -225,8 +287,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
with torch.autocast("cuda"):
- ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size)
-
+ ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size)
if unload:
shared.sd_model.cond_stage_model.to(devices.cpu)
shared.sd_model.first_stage_model.to(devices.cpu)
@@ -240,6 +301,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
last_saved_file = "<none>"
last_saved_image = "<none>"
+ forced_filename = "<none>"
ititial_step = hypernetwork.step or 0
if ititial_step > steps:
@@ -261,7 +323,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
with torch.autocast("cuda"):
c = stack_conds([entry.cond for entry in entries]).to(devices.device)
-# c = torch.vstack([entry.cond for entry in entries]).to(devices.device)
+ # c = torch.vstack([entry.cond for entry in entries]).to(devices.device)
x = torch.stack([entry.latent for entry in entries]).to(devices.device)
loss = shared.sd_model(x, c)[0]
del x
@@ -287,7 +349,8 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
})
if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
- last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png')
+ forced_filename = f'{hypernetwork_name}-{hypernetwork.step}'
+ last_saved_image = os.path.join(images_dir, forced_filename)
optimizer.zero_grad()
shared.sd_model.cond_stage_model.to(devices.device)
@@ -323,7 +386,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
if image is not None:
shared.state.current_image = image
- image.save(last_saved_image)
+ last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename)
last_saved_image += f", prompt: {preview_text}"
shared.state.job_no = hypernetwork.step
@@ -333,7 +396,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
Loss: {mean_loss:.7f}<br/>
Step: {hypernetwork.step}<br/>
Last prompt: {html.escape(entries[0].cond_text)}<br/>
-Last saved embedding: {html.escape(last_saved_file)}<br/>
+Last saved hypernetwork: {html.escape(last_saved_file)}<br/>
Last saved image: {html.escape(last_saved_image)}<br/>
</p>
"""
diff --git a/modules/hypernetworks/ui.py b/modules/hypernetworks/ui.py
index dfa599af..266f04f6 100644
--- a/modules/hypernetworks/ui.py
+++ b/modules/hypernetworks/ui.py
@@ -1,5 +1,6 @@
import html
import os
+import re
import gradio as gr
@@ -9,11 +10,21 @@ from modules import sd_hijack, shared, devices
from modules.hypernetworks import hypernetwork
-def create_hypernetwork(name, enable_sizes):
+def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, add_layer_norm=False, activation_func=None):
fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
- assert not os.path.exists(fn), f"file {fn} already exists"
-
- hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(name=name, enable_sizes=[int(x) for x in enable_sizes])
+ if not overwrite_old:
+ assert not os.path.exists(fn), f"file {fn} already exists"
+
+ if type(layer_structure) == str:
+ layer_structure = [float(x.strip()) for x in layer_structure.split(",")]
+
+ hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(
+ name=name,
+ enable_sizes=[int(x) for x in enable_sizes],
+ layer_structure=layer_structure,
+ add_layer_norm=add_layer_norm,
+ activation_func=activation_func,
+ )
hypernet.save(fn)
shared.reload_hypernetworks()