aboutsummaryrefslogtreecommitdiffstats
path: root/modules/interrogate.py
diff options
context:
space:
mode:
authorbrkirch <brkirch@users.noreply.github.com>2022-10-14 08:42:53 +0000
committerAUTOMATIC1111 <16777216c@gmail.com>2022-10-14 13:31:39 +0000
commitfdef8253a43ca5135923092ca9b85e878d980869 (patch)
treedb93cdfdbd1719de8d94bdabd6188041f1f69edc /modules/interrogate.py
parentfdecb636855748e03efc40c846a0043800aadfcc (diff)
downloadstable-diffusion-webui-gfx803-fdef8253a43ca5135923092ca9b85e878d980869.tar.gz
stable-diffusion-webui-gfx803-fdef8253a43ca5135923092ca9b85e878d980869.tar.bz2
stable-diffusion-webui-gfx803-fdef8253a43ca5135923092ca9b85e878d980869.zip
Add 'interrogate' and 'all' choices to --use-cpu
* Add 'interrogate' and 'all' choices to --use-cpu * Change type for --use-cpu argument to str.lower, so that choices are case insensitive
Diffstat (limited to 'modules/interrogate.py')
-rw-r--r--modules/interrogate.py14
1 files changed, 7 insertions, 7 deletions
diff --git a/modules/interrogate.py b/modules/interrogate.py
index af858cc0..9263d65a 100644
--- a/modules/interrogate.py
+++ b/modules/interrogate.py
@@ -55,7 +55,7 @@ class InterrogateModels:
model, preprocess = clip.load(clip_model_name)
model.eval()
- model = model.to(shared.device)
+ model = model.to(devices.device_interrogate)
return model, preprocess
@@ -65,14 +65,14 @@ class InterrogateModels:
if not shared.cmd_opts.no_half:
self.blip_model = self.blip_model.half()
- self.blip_model = self.blip_model.to(shared.device)
+ self.blip_model = self.blip_model.to(devices.device_interrogate)
if self.clip_model is None:
self.clip_model, self.clip_preprocess = self.load_clip_model()
if not shared.cmd_opts.no_half:
self.clip_model = self.clip_model.half()
- self.clip_model = self.clip_model.to(shared.device)
+ self.clip_model = self.clip_model.to(devices.device_interrogate)
self.dtype = next(self.clip_model.parameters()).dtype
@@ -99,11 +99,11 @@ class InterrogateModels:
text_array = text_array[0:int(shared.opts.interrogate_clip_dict_limit)]
top_count = min(top_count, len(text_array))
- text_tokens = clip.tokenize([text for text in text_array], truncate=True).to(shared.device)
+ text_tokens = clip.tokenize([text for text in text_array], truncate=True).to(devices.device_interrogate)
text_features = self.clip_model.encode_text(text_tokens).type(self.dtype)
text_features /= text_features.norm(dim=-1, keepdim=True)
- similarity = torch.zeros((1, len(text_array))).to(shared.device)
+ similarity = torch.zeros((1, len(text_array))).to(devices.device_interrogate)
for i in range(image_features.shape[0]):
similarity += (100.0 * image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1)
similarity /= image_features.shape[0]
@@ -116,7 +116,7 @@ class InterrogateModels:
transforms.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
- ])(pil_image).unsqueeze(0).type(self.dtype).to(shared.device)
+ ])(pil_image).unsqueeze(0).type(self.dtype).to(devices.device_interrogate)
with torch.no_grad():
caption = self.blip_model.generate(gpu_image, sample=False, num_beams=shared.opts.interrogate_clip_num_beams, min_length=shared.opts.interrogate_clip_min_length, max_length=shared.opts.interrogate_clip_max_length)
@@ -140,7 +140,7 @@ class InterrogateModels:
res = caption
- clip_image = self.clip_preprocess(pil_image).unsqueeze(0).type(self.dtype).to(shared.device)
+ clip_image = self.clip_preprocess(pil_image).unsqueeze(0).type(self.dtype).to(devices.device_interrogate)
precision_scope = torch.autocast if shared.cmd_opts.precision == "autocast" else contextlib.nullcontext
with torch.no_grad(), precision_scope("cuda"):