diff options
author | AUTOMATIC1111 <16777216c@gmail.com> | 2023-05-10 18:24:18 +0000 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-05-10 18:24:18 +0000 |
commit | 5abecea34cd98537f006c5e9a197acd1fe9db023 (patch) | |
tree | 98248bc21aa4ad9715205f0a65a654532c6cfcc0 /modules/models/diffusion/uni_pc/uni_pc.py | |
parent | f5ea1e9d928e0d45b3ebcd8ddd1cacbc6a96e184 (diff) | |
parent | 3ec7b705c78b7aca9569c92a419837352c7a4ec6 (diff) | |
download | stable-diffusion-webui-gfx803-5abecea34cd98537f006c5e9a197acd1fe9db023.tar.gz stable-diffusion-webui-gfx803-5abecea34cd98537f006c5e9a197acd1fe9db023.tar.bz2 stable-diffusion-webui-gfx803-5abecea34cd98537f006c5e9a197acd1fe9db023.zip |
Merge pull request #10259 from AUTOMATIC1111/ruff
Ruff
Diffstat (limited to 'modules/models/diffusion/uni_pc/uni_pc.py')
-rw-r--r-- | modules/models/diffusion/uni_pc/uni_pc.py | 12 |
1 files changed, 7 insertions, 5 deletions
diff --git a/modules/models/diffusion/uni_pc/uni_pc.py b/modules/models/diffusion/uni_pc/uni_pc.py index 11b330bc..a227b947 100644 --- a/modules/models/diffusion/uni_pc/uni_pc.py +++ b/modules/models/diffusion/uni_pc/uni_pc.py @@ -1,5 +1,4 @@ import torch -import torch.nn.functional as F import math from tqdm.auto import trange @@ -179,13 +178,13 @@ def model_wrapper( model, noise_schedule, model_type="noise", - model_kwargs={}, + model_kwargs=None, guidance_type="uncond", #condition=None, #unconditional_condition=None, guidance_scale=1., classifier_fn=None, - classifier_kwargs={}, + classifier_kwargs=None, ): """Create a wrapper function for the noise prediction model. @@ -276,6 +275,9 @@ def model_wrapper( A noise prediction model that accepts the noised data and the continuous time as the inputs. """ + model_kwargs = model_kwargs or {} + classifier_kwargs = classifier_kwargs or {} + def get_model_input_time(t_continuous): """ Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time. @@ -342,7 +344,7 @@ def model_wrapper( t_in = torch.cat([t_continuous] * 2) if isinstance(condition, dict): assert isinstance(unconditional_condition, dict) - c_in = dict() + c_in = {} for k in condition: if isinstance(condition[k], list): c_in[k] = [torch.cat([ @@ -353,7 +355,7 @@ def model_wrapper( unconditional_condition[k], condition[k]]) elif isinstance(condition, list): - c_in = list() + c_in = [] assert isinstance(unconditional_condition, list) for i in range(len(condition)): c_in.append(torch.cat([unconditional_condition[i], condition[i]])) |