aboutsummaryrefslogtreecommitdiffstats
path: root/modules/processing.py
diff options
context:
space:
mode:
authorAUTOMATIC1111 <16777216c@gmail.com>2023-08-09 05:43:31 +0000
committerAUTOMATIC1111 <16777216c@gmail.com>2023-08-09 05:43:31 +0000
commit0d5dc9a6e7f6362e423a06bf0e75dd5854025394 (patch)
tree563a11f4abdbdac32b36c09ceb5b78637ae93712 /modules/processing.py
parentd81d3fa8cde83ce1421889ed481a69c950c0c6f6 (diff)
downloadstable-diffusion-webui-gfx803-0d5dc9a6e7f6362e423a06bf0e75dd5854025394.tar.gz
stable-diffusion-webui-gfx803-0d5dc9a6e7f6362e423a06bf0e75dd5854025394.tar.bz2
stable-diffusion-webui-gfx803-0d5dc9a6e7f6362e423a06bf0e75dd5854025394.zip
rework RNG to use generators instead of generating noises beforehand
Diffstat (limited to 'modules/processing.py')
-rw-r--r--modules/processing.py89
1 files changed, 10 insertions, 79 deletions
diff --git a/modules/processing.py b/modules/processing.py
index aa72b132..2df5e8c7 100644
--- a/modules/processing.py
+++ b/modules/processing.py
@@ -14,7 +14,7 @@ from skimage import exposure
from typing import Any, Dict, List
import modules.sd_hijack
-from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, extra_networks, sd_vae_approx, scripts, sd_samplers_common, sd_unet, errors
+from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, extra_networks, sd_vae_approx, scripts, sd_samplers_common, sd_unet, errors, rng
from modules.sd_hijack import model_hijack
from modules.sd_samplers_common import images_tensor_to_samples, decode_first_stage, approximation_indexes
from modules.shared import opts, cmd_opts, state
@@ -186,6 +186,7 @@ class StableDiffusionProcessing:
self.cached_c = StableDiffusionProcessing.cached_c
self.uc = None
self.c = None
+ self.rng: rng.ImageRNG = None
self.user = None
@@ -475,82 +476,9 @@ class Processed:
return self.token_merging_ratio_hr if for_hr else self.token_merging_ratio
-# from https://discuss.pytorch.org/t/help-regarding-slerp-function-for-generative-model-sampling/32475/3
-def slerp(val, low, high):
- low_norm = low/torch.norm(low, dim=1, keepdim=True)
- high_norm = high/torch.norm(high, dim=1, keepdim=True)
- dot = (low_norm*high_norm).sum(1)
-
- if dot.mean() > 0.9995:
- return low * val + high * (1 - val)
-
- omega = torch.acos(dot)
- so = torch.sin(omega)
- res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high
- return res
-
-
def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0, p=None):
- eta_noise_seed_delta = opts.eta_noise_seed_delta or 0
- xs = []
-
- # if we have multiple seeds, this means we are working with batch size>1; this then
- # enables the generation of additional tensors with noise that the sampler will use during its processing.
- # Using those pre-generated tensors instead of simple torch.randn allows a batch with seeds [100, 101] to
- # produce the same images as with two batches [100], [101].
- if p is not None and p.sampler is not None and (len(seeds) > 1 and opts.enable_batch_seeds or eta_noise_seed_delta > 0):
- sampler_noises = [[] for _ in range(p.sampler.number_of_needed_noises(p))]
- else:
- sampler_noises = None
-
- for i, seed in enumerate(seeds):
- noise_shape = shape if seed_resize_from_h <= 0 or seed_resize_from_w <= 0 else (shape[0], seed_resize_from_h//8, seed_resize_from_w//8)
-
- subnoise = None
- if subseeds is not None and subseed_strength != 0:
- subseed = 0 if i >= len(subseeds) else subseeds[i]
-
- subnoise = devices.randn(subseed, noise_shape)
-
- # randn results depend on device; gpu and cpu get different results for same seed;
- # the way I see it, it's better to do this on CPU, so that everyone gets same result;
- # but the original script had it like this, so I do not dare change it for now because
- # it will break everyone's seeds.
- noise = devices.randn(seed, noise_shape)
-
- if subnoise is not None:
- noise = slerp(subseed_strength, noise, subnoise)
-
- if noise_shape != shape:
- x = devices.randn(seed, shape)
- dx = (shape[2] - noise_shape[2]) // 2
- dy = (shape[1] - noise_shape[1]) // 2
- w = noise_shape[2] if dx >= 0 else noise_shape[2] + 2 * dx
- h = noise_shape[1] if dy >= 0 else noise_shape[1] + 2 * dy
- tx = 0 if dx < 0 else dx
- ty = 0 if dy < 0 else dy
- dx = max(-dx, 0)
- dy = max(-dy, 0)
-
- x[:, ty:ty+h, tx:tx+w] = noise[:, dy:dy+h, dx:dx+w]
- noise = x
-
- if sampler_noises is not None:
- cnt = p.sampler.number_of_needed_noises(p)
-
- if eta_noise_seed_delta > 0:
- devices.manual_seed(seed + eta_noise_seed_delta)
-
- for j in range(cnt):
- sampler_noises[j].append(devices.randn_without_seed(tuple(noise_shape)))
-
- xs.append(noise)
-
- if sampler_noises is not None:
- p.sampler.sampler_noises = [torch.stack(n).to(shared.device) for n in sampler_noises]
-
- x = torch.stack(xs).to(shared.device)
- return x
+ g = rng.ImageRNG(shape, seeds, subseeds=subseeds, subseed_strength=subseed_strength, seed_resize_from_h=seed_resize_from_h, seed_resize_from_w=seed_resize_from_w)
+ return g.next()
class DecodedSamples(list):
@@ -769,6 +697,8 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
p.seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
p.subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
+ p.rng = rng.ImageRNG((opt_C, p.height // opt_f, p.width // opt_f), p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, seed_resize_from_h=p.seed_resize_from_h, seed_resize_from_w=p.seed_resize_from_w)
+
if p.scripts is not None:
p.scripts.before_process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds)
@@ -1072,7 +1002,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
- x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
+ x = self.rng.next()
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
del x
@@ -1160,7 +1090,8 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
samples = samples[:, :, self.truncate_y//2:samples.shape[2]-(self.truncate_y+1)//2, self.truncate_x//2:samples.shape[3]-(self.truncate_x+1)//2]
- noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, p=self)
+ self.rng = rng.ImageRNG(samples.shape[1:], self.seeds, subseeds=self.subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w)
+ noise = self.rng.next()
# GC now before running the next img2img to prevent running out of memory
devices.torch_gc()
@@ -1418,7 +1349,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
self.image_conditioning = self.img2img_image_conditioning(image, self.init_latent, image_mask)
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
- x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
+ x = self.rng.next()
if self.initial_noise_multiplier != 1.0:
self.extra_generation_params["Noise multiplier"] = self.initial_noise_multiplier