aboutsummaryrefslogtreecommitdiffstats
path: root/modules/processing.py
diff options
context:
space:
mode:
authorAUTOMATIC1111 <16777216c@gmail.com>2023-08-04 05:05:21 +0000
committerGitHub <noreply@github.com>2023-08-04 05:05:21 +0000
commit56c3f94ba30d76bf680db9bc765624b9a143d769 (patch)
tree6924fc635fe13fe59911a285313308be2d9acdc7 /modules/processing.py
parent952effa8b10dba2f2f7f2cf4191f987e3666e9f0 (diff)
parent073c0ebba380acbd73be8262feba41212165ff84 (diff)
downloadstable-diffusion-webui-gfx803-56c3f94ba30d76bf680db9bc765624b9a143d769.tar.gz
stable-diffusion-webui-gfx803-56c3f94ba30d76bf680db9bc765624b9a143d769.tar.bz2
stable-diffusion-webui-gfx803-56c3f94ba30d76bf680db9bc765624b9a143d769.zip
Merge branch 'dev' into dev
Diffstat (limited to 'modules/processing.py')
-rw-r--r--modules/processing.py93
1 files changed, 68 insertions, 25 deletions
diff --git a/modules/processing.py b/modules/processing.py
index 6567b3cf..8f34c8b4 100644
--- a/modules/processing.py
+++ b/modules/processing.py
@@ -14,7 +14,7 @@ from skimage import exposure
from typing import Any, Dict, List
import modules.sd_hijack
-from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, extra_networks, sd_vae_approx, scripts, sd_samplers_common, sd_unet
+from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, extra_networks, sd_vae_approx, scripts, sd_samplers_common, sd_unet, errors
from modules.sd_hijack import model_hijack
from modules.shared import opts, cmd_opts, state
import modules.shared as shared
@@ -492,7 +492,7 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see
noise_shape = shape if seed_resize_from_h <= 0 or seed_resize_from_w <= 0 else (shape[0], seed_resize_from_h//8, seed_resize_from_w//8)
subnoise = None
- if subseeds is not None:
+ if subseeds is not None and subseed_strength != 0:
subseed = 0 if i >= len(subseeds) else subseeds[i]
subnoise = devices.randn(subseed, noise_shape)
@@ -524,7 +524,7 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see
cnt = p.sampler.number_of_needed_noises(p)
if eta_noise_seed_delta > 0:
- torch.manual_seed(seed + eta_noise_seed_delta)
+ devices.manual_seed(seed + eta_noise_seed_delta)
for j in range(cnt):
sampler_noises[j].append(devices.randn_without_seed(tuple(noise_shape)))
@@ -538,6 +538,40 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see
return x
+def decode_latent_batch(model, batch, target_device=None, check_for_nans=False):
+ samples = []
+
+ for i in range(batch.shape[0]):
+ sample = decode_first_stage(model, batch[i:i + 1])[0]
+
+ if check_for_nans:
+ try:
+ devices.test_for_nans(sample, "vae")
+ except devices.NansException as e:
+ if devices.dtype_vae == torch.float32 or not shared.opts.auto_vae_precision:
+ raise e
+
+ errors.print_error_explanation(
+ "A tensor with all NaNs was produced in VAE.\n"
+ "Web UI will now convert VAE into 32-bit float and retry.\n"
+ "To disable this behavior, disable the 'Automaticlly revert VAE to 32-bit floats' setting.\n"
+ "To always start with 32-bit VAE, use --no-half-vae commandline flag."
+ )
+
+ devices.dtype_vae = torch.float32
+ model.first_stage_model.to(devices.dtype_vae)
+ batch = batch.to(devices.dtype_vae)
+
+ sample = decode_first_stage(model, batch[i:i + 1])[0]
+
+ if target_device is not None:
+ sample = sample.to(target_device)
+
+ samples.append(sample)
+
+ return samples
+
+
def decode_first_stage(model, x):
x = model.decode_first_stage(x.to(devices.dtype_vae))
@@ -566,8 +600,12 @@ def program_version():
return res
-def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0, use_main_prompt=False):
- index = position_in_batch + iteration * p.batch_size
+def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0, use_main_prompt=False, index=None, all_negative_prompts=None):
+ if index is None:
+ index = position_in_batch + iteration * p.batch_size
+
+ if all_negative_prompts is None:
+ all_negative_prompts = p.all_negative_prompts
clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers)
enable_hr = getattr(p, 'enable_hr', False)
@@ -583,12 +621,12 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
"Sampler": p.sampler_name,
"CFG scale": p.cfg_scale,
"Image CFG scale": getattr(p, 'image_cfg_scale', None),
- "Seed": all_seeds[index],
+ "Seed": p.all_seeds[0] if use_main_prompt else all_seeds[index],
"Face restoration": (opts.face_restoration_model if p.restore_faces else None),
"Size": f"{p.width}x{p.height}",
"Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash),
- "Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')),
- "Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]),
+ "Model": (None if not opts.add_model_name_to_info else shared.sd_model.sd_checkpoint_info.name_for_extra),
+ "Variation seed": (None if p.subseed_strength == 0 else (p.all_subseeds[0] if use_main_prompt else all_subseeds[index])),
"Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
"Seed resize from": (None if p.seed_resize_from_w <= 0 or p.seed_resize_from_h <= 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
"Denoising strength": getattr(p, 'denoising_strength', None),
@@ -598,7 +636,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
"Token merging ratio": None if token_merging_ratio == 0 else token_merging_ratio,
"Token merging ratio hr": None if not enable_hr or token_merging_ratio_hr == 0 else token_merging_ratio_hr,
"Init image hash": getattr(p, 'init_img_hash', None),
- "RNG": opts.randn_source if opts.randn_source != "GPU" else None,
+ "RNG": opts.randn_source if opts.randn_source != "GPU" and opts.randn_source != "NV" else None,
"NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond,
**p.extra_generation_params,
"Version": program_version() if opts.add_version_to_infotext else None,
@@ -608,7 +646,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None])
prompt_text = p.prompt if use_main_prompt else all_prompts[index]
- negative_prompt_text = f"\nNegative prompt: {p.all_negative_prompts[index]}" if p.all_negative_prompts[index] else ""
+ negative_prompt_text = f"\nNegative prompt: {all_negative_prompts[index]}" if all_negative_prompts[index] else ""
return f"{prompt_text}{negative_prompt_text}\n{generation_params_text}".strip()
@@ -682,9 +720,6 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
else:
p.all_subseeds = [int(subseed) + x for x in range(len(p.all_prompts))]
- def infotext(iteration=0, position_in_batch=0, use_main_prompt=False):
- return create_infotext(p, p.all_prompts, p.all_seeds, p.all_subseeds, comments, iteration, position_in_batch, use_main_prompt)
-
if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
model_hijack.embedding_db.load_textual_inversion_embeddings()
@@ -758,10 +793,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
with devices.without_autocast() if devices.unet_needs_upcast else devices.autocast():
samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts)
- x_samples_ddim = [decode_first_stage(p.sd_model, samples_ddim[i:i+1].to(dtype=devices.dtype_vae))[0].cpu() for i in range(samples_ddim.size(0))]
- for x in x_samples_ddim:
- devices.test_for_nans(x, "vae")
-
+ x_samples_ddim = decode_latent_batch(p.sd_model, samples_ddim, target_device=devices.cpu, check_for_nans=True)
x_samples_ddim = torch.stack(x_samples_ddim).float()
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
@@ -775,6 +807,16 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
if p.scripts is not None:
p.scripts.postprocess_batch(p, x_samples_ddim, batch_number=n)
+ p.prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
+ p.negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size]
+
+ batch_params = scripts.PostprocessBatchListArgs(list(x_samples_ddim))
+ p.scripts.postprocess_batch_list(p, batch_params, batch_number=n)
+ x_samples_ddim = batch_params.images
+
+ def infotext(index=0, use_main_prompt=False):
+ return create_infotext(p, p.prompts, p.seeds, p.subseeds, use_main_prompt=use_main_prompt, index=index, all_negative_prompts=p.negative_prompts)
+
for i, x_sample in enumerate(x_samples_ddim):
p.batch_index = i
@@ -783,7 +825,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
if p.restore_faces:
if opts.save and not p.do_not_save_samples and opts.save_images_before_face_restoration:
- images.save_image(Image.fromarray(x_sample), p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-face-restoration")
+ images.save_image(Image.fromarray(x_sample), p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-before-face-restoration")
devices.torch_gc()
@@ -800,15 +842,15 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
if p.color_corrections is not None and i < len(p.color_corrections):
if opts.save and not p.do_not_save_samples and opts.save_images_before_color_correction:
image_without_cc = apply_overlay(image, p.paste_to, i, p.overlay_images)
- images.save_image(image_without_cc, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-color-correction")
+ images.save_image(image_without_cc, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-before-color-correction")
image = apply_color_correction(p.color_corrections[i], image)
image = apply_overlay(image, p.paste_to, i, p.overlay_images)
if opts.samples_save and not p.do_not_save_samples:
- images.save_image(image, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p)
+ images.save_image(image, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p)
- text = infotext(n, i)
+ text = infotext(i)
infotexts.append(text)
if opts.enable_pnginfo:
image.info["parameters"] = text
@@ -819,10 +861,10 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
image_mask_composite = Image.composite(image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), images.resize_image(2, p.mask_for_overlay, image.width, image.height).convert('L')).convert('RGBA')
if opts.save_mask:
- images.save_image(image_mask, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-mask")
+ images.save_image(image_mask, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask")
if opts.save_mask_composite:
- images.save_image(image_mask_composite, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-mask-composite")
+ images.save_image(image_mask_composite, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask-composite")
if opts.return_mask:
output_images.append(image_mask)
@@ -863,7 +905,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
p,
images_list=output_images,
seed=p.all_seeds[0],
- info=infotext(),
+ info=infotexts[0],
comments="".join(f"{comment}\n" for comment in comments),
subseed=p.all_subseeds[0],
index_of_first_image=index_of_first_image,
@@ -1029,7 +1071,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
image = sd_samplers.sample_to_image(image, index, approximation=0)
info = create_infotext(self, self.all_prompts, self.all_seeds, self.all_subseeds, [], iteration=self.iteration, position_in_batch=index)
- images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, info=info, suffix="-before-highres-fix")
+ images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, info=info, p=self, suffix="-before-highres-fix")
if latent_scale_mode is not None:
for i in range(samples.shape[0]):
@@ -1306,6 +1348,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
image = image.to(shared.device, dtype=devices.dtype_vae)
self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image))
+ devices.torch_gc()
if self.resize_mode == 3:
self.init_latent = torch.nn.functional.interpolate(self.init_latent, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")