diff options
author | brkirch <brkirch@users.noreply.github.com> | 2023-01-25 05:23:10 +0000 |
---|---|---|
committer | brkirch <brkirch@users.noreply.github.com> | 2023-01-25 06:13:04 +0000 |
commit | e3b53fd295aca784253dfc8668ec87b537a72f43 (patch) | |
tree | 6fb26afd730c0561a2506ead2d2c8295d326de40 /modules/processing.py | |
parent | 84d9ce30cb427759547bc7876ed80ab91787d175 (diff) | |
download | stable-diffusion-webui-gfx803-e3b53fd295aca784253dfc8668ec87b537a72f43.tar.gz stable-diffusion-webui-gfx803-e3b53fd295aca784253dfc8668ec87b537a72f43.tar.bz2 stable-diffusion-webui-gfx803-e3b53fd295aca784253dfc8668ec87b537a72f43.zip |
Add UI setting for upcasting attention to float32
Adds "Upcast cross attention layer to float32" option in Stable Diffusion settings. This allows for generating images using SD 2.1 models without --no-half or xFormers.
In order to make upcasting cross attention layer optimizations possible it is necessary to indent several sections of code in sd_hijack_optimizations.py so that a context manager can be used to disable autocast. Also, even though Stable Diffusion (and Diffusers) only upcast q and k, unfortunately my findings were that most of the cross attention layer optimizations could not function unless v is upcast also.
Diffstat (limited to 'modules/processing.py')
-rw-r--r-- | modules/processing.py | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/modules/processing.py b/modules/processing.py index 2d186ba0..a850082d 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -611,7 +611,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: if p.n_iter > 1:
shared.state.job = f"Batch {n+1} out of {p.n_iter}"
- with devices.autocast(disable=devices.unet_needs_upcast):
+ with devices.without_autocast() if devices.unet_needs_upcast else devices.autocast():
samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, prompts=prompts)
x_samples_ddim = [decode_first_stage(p.sd_model, samples_ddim[i:i+1].to(dtype=devices.dtype_vae))[0].cpu() for i in range(samples_ddim.size(0))]
|