aboutsummaryrefslogtreecommitdiffstats
path: root/modules/processing.py
diff options
context:
space:
mode:
authorAUTOMATIC <16777216c@gmail.com>2022-11-02 09:45:03 +0000
committerAUTOMATIC <16777216c@gmail.com>2022-11-02 09:45:03 +0000
commiteb5e82c7ddf5e72fa13b83bd1f12d3a07a4de1a4 (patch)
tree3fdea81dfaba9a4e2350fbcc9b41a13a5ad362a4 /modules/processing.py
parent9c67408004ed132637d10321bf44565f82055fd2 (diff)
downloadstable-diffusion-webui-gfx803-eb5e82c7ddf5e72fa13b83bd1f12d3a07a4de1a4.tar.gz
stable-diffusion-webui-gfx803-eb5e82c7ddf5e72fa13b83bd1f12d3a07a4de1a4.tar.bz2
stable-diffusion-webui-gfx803-eb5e82c7ddf5e72fa13b83bd1f12d3a07a4de1a4.zip
do not unnecessarily run VAE one more time when saving intermediate image with hires fix
Diffstat (limited to 'modules/processing.py')
-rw-r--r--modules/processing.py39
1 files changed, 20 insertions, 19 deletions
diff --git a/modules/processing.py b/modules/processing.py
index 2dcf4879..3a364b5f 100644
--- a/modules/processing.py
+++ b/modules/processing.py
@@ -199,7 +199,7 @@ class StableDiffusionProcessing():
def init(self, all_prompts, all_seeds, all_subseeds):
pass
- def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
+ def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
raise NotImplementedError()
def close(self):
@@ -521,11 +521,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
shared.state.job = f"Batch {n+1} out of {p.n_iter}"
with devices.autocast():
- # Only Txt2Img needs an extra argument, n, when saving intermediate images pre highres fix.
- if isinstance(p, StableDiffusionProcessingTxt2Img):
- samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, n=n)
- else:
- samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength)
+ samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, prompts=prompts)
samples_ddim = samples_ddim.to(devices.dtype_vae)
x_samples_ddim = decode_first_stage(p.sd_model, samples_ddim)
@@ -653,7 +649,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
self.truncate_x = int(self.firstphase_width - firstphase_width_truncated) // opt_f
self.truncate_y = int(self.firstphase_height - firstphase_height_truncated) // opt_f
- def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, n=0):
+ def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
if not self.enable_hr:
@@ -666,9 +662,21 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
samples = samples[:, :, self.truncate_y//2:samples.shape[2]-self.truncate_y//2, self.truncate_x//2:samples.shape[3]-self.truncate_x//2]
+ """saves image before applying hires fix, if enabled in options; takes as an arguyment either an image or batch with latent space images"""
+ def save_intermediate(image, index):
+ if not opts.save or self.do_not_save_samples or not opts.save_images_before_highres_fix:
+ return
+
+ if not isinstance(image, Image.Image):
+ image = sd_samplers.sample_to_image(image, index)
+
+ images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, suffix="-before-highres-fix")
+
if opts.use_scale_latent_for_hires_fix:
samples = torch.nn.functional.interpolate(samples, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
+ for i in range(samples.shape[0]):
+ save_intermediate(samples, i)
else:
decoded_samples = decode_first_stage(self.sd_model, samples)
lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0)
@@ -678,6 +686,9 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
x_sample = x_sample.astype(np.uint8)
image = Image.fromarray(x_sample)
+
+ save_intermediate(image, i)
+
image = images.resize_image(0, image, self.width, self.height)
image = np.array(image).astype(np.float32) / 255.0
image = np.moveaxis(image, 2, 0)
@@ -689,15 +700,6 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
samples = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(decoded_samples))
- # Save a copy of the image/s before doing highres fix, if applicable.
- if opts.save and not self.do_not_save_samples and opts.save_images_before_highres_fix:
- for i in range(self.batch_size):
- # This batch's ith image.
- img = sd_samplers.sample_to_image(samples, i)
- # Index that accounts for both batch size and batch count.
- ind = i + self.batch_size*n
- images.save_image(img, self.outpath_samples, "", self.all_seeds[ind], self.all_prompts[ind], opts.samples_format, suffix=f"-before-highres-fix")
-
shared.state.nextjob()
self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
@@ -844,8 +846,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
self.image_conditioning = self.img2img_image_conditioning(image, self.init_latent, self.image_mask)
-
- def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
+ def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)
@@ -856,4 +857,4 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
del x
devices.torch_gc()
- return samples \ No newline at end of file
+ return samples