diff options
author | AUTOMATIC <16777216c@gmail.com> | 2022-12-03 15:06:33 +0000 |
---|---|---|
committer | AUTOMATIC <16777216c@gmail.com> | 2022-12-03 15:06:33 +0000 |
commit | b6e5edd74657e3fd1fbd04f341b7a84625d4aa7a (patch) | |
tree | bac9ddea7cafb768e064b75281edcfeac3a52ca1 /modules/scunet_model.py | |
parent | 46b0d230e7c13e247eabb22e1103ce512e7ed6b1 (diff) | |
download | stable-diffusion-webui-gfx803-b6e5edd74657e3fd1fbd04f341b7a84625d4aa7a.tar.gz stable-diffusion-webui-gfx803-b6e5edd74657e3fd1fbd04f341b7a84625d4aa7a.tar.bz2 stable-diffusion-webui-gfx803-b6e5edd74657e3fd1fbd04f341b7a84625d4aa7a.zip |
add built-in extension system
add support for adding upscalers in extensions
move LDSR, ScuNET and SwinIR to built-in extensions
Diffstat (limited to 'modules/scunet_model.py')
-rw-r--r-- | modules/scunet_model.py | 87 |
1 files changed, 0 insertions, 87 deletions
diff --git a/modules/scunet_model.py b/modules/scunet_model.py deleted file mode 100644 index 52360241..00000000 --- a/modules/scunet_model.py +++ /dev/null @@ -1,87 +0,0 @@ -import os.path -import sys -import traceback - -import PIL.Image -import numpy as np -import torch -from basicsr.utils.download_util import load_file_from_url - -import modules.upscaler -from modules import devices, modelloader -from modules.scunet_model_arch import SCUNet as net - - -class UpscalerScuNET(modules.upscaler.Upscaler): - def __init__(self, dirname): - self.name = "ScuNET" - self.model_name = "ScuNET GAN" - self.model_name2 = "ScuNET PSNR" - self.model_url = "https://github.com/cszn/KAIR/releases/download/v1.0/scunet_color_real_gan.pth" - self.model_url2 = "https://github.com/cszn/KAIR/releases/download/v1.0/scunet_color_real_psnr.pth" - self.user_path = dirname - super().__init__() - model_paths = self.find_models(ext_filter=[".pth"]) - scalers = [] - add_model2 = True - for file in model_paths: - if "http" in file: - name = self.model_name - else: - name = modelloader.friendly_name(file) - if name == self.model_name2 or file == self.model_url2: - add_model2 = False - try: - scaler_data = modules.upscaler.UpscalerData(name, file, self, 4) - scalers.append(scaler_data) - except Exception: - print(f"Error loading ScuNET model: {file}", file=sys.stderr) - print(traceback.format_exc(), file=sys.stderr) - if add_model2: - scaler_data2 = modules.upscaler.UpscalerData(self.model_name2, self.model_url2, self) - scalers.append(scaler_data2) - self.scalers = scalers - - def do_upscale(self, img: PIL.Image, selected_file): - torch.cuda.empty_cache() - - model = self.load_model(selected_file) - if model is None: - return img - - device = devices.device_scunet - img = np.array(img) - img = img[:, :, ::-1] - img = np.moveaxis(img, 2, 0) / 255 - img = torch.from_numpy(img).float() - img = img.unsqueeze(0).to(device) - - with torch.no_grad(): - output = model(img) - output = output.squeeze().float().cpu().clamp_(0, 1).numpy() - output = 255. * np.moveaxis(output, 0, 2) - output = output.astype(np.uint8) - output = output[:, :, ::-1] - torch.cuda.empty_cache() - return PIL.Image.fromarray(output, 'RGB') - - def load_model(self, path: str): - device = devices.device_scunet - if "http" in path: - filename = load_file_from_url(url=self.model_url, model_dir=self.model_path, file_name="%s.pth" % self.name, - progress=True) - else: - filename = path - if not os.path.exists(os.path.join(self.model_path, filename)) or filename is None: - print(f"ScuNET: Unable to load model from {filename}", file=sys.stderr) - return None - - model = net(in_nc=3, config=[4, 4, 4, 4, 4, 4, 4], dim=64) - model.load_state_dict(torch.load(filename), strict=True) - model.eval() - for k, v in model.named_parameters(): - v.requires_grad = False - model = model.to(device) - - return model - |