aboutsummaryrefslogtreecommitdiffstats
path: root/modules/sd_models.py
diff options
context:
space:
mode:
authorAUTOMATIC1111 <16777216c@gmail.com>2022-10-15 07:47:26 +0000
committerGitHub <noreply@github.com>2022-10-15 07:47:26 +0000
commitf42e0aae6de6b9a7f8da4eaf13594a13502b4fa9 (patch)
tree472025101577ff5cbd45a3bcb524e6e4accb75ec /modules/sd_models.py
parent0e77ee24b0b651d6a564245243850e4fb9831e31 (diff)
parentd13ce89e203d76ab2b54a3406a93a5e4304f529e (diff)
downloadstable-diffusion-webui-gfx803-f42e0aae6de6b9a7f8da4eaf13594a13502b4fa9.tar.gz
stable-diffusion-webui-gfx803-f42e0aae6de6b9a7f8da4eaf13594a13502b4fa9.tar.bz2
stable-diffusion-webui-gfx803-f42e0aae6de6b9a7f8da4eaf13594a13502b4fa9.zip
Merge branch 'master' into master
Diffstat (limited to 'modules/sd_models.py')
-rw-r--r--modules/sd_models.py118
1 files changed, 83 insertions, 35 deletions
diff --git a/modules/sd_models.py b/modules/sd_models.py
index 2539f14c..3aa21ec1 100644
--- a/modules/sd_models.py
+++ b/modules/sd_models.py
@@ -1,24 +1,21 @@
-import glob
+import collections
import os.path
import sys
from collections import namedtuple
import torch
from omegaconf import OmegaConf
-
from ldm.util import instantiate_from_config
-from modules import shared, modelloader
+from modules import shared, modelloader, devices
from modules.paths import models_path
model_dir = "Stable-diffusion"
model_path = os.path.abspath(os.path.join(models_path, model_dir))
-model_name = "sd-v1-4.ckpt"
-model_url = "https://drive.yerf.org/wl/?id=EBfTrmcCCUAGaQBXVIj5lJmEhjoP1tgl&mode=grid&download=1"
-user_dir = None
-CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash', 'model_name'])
+CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash', 'model_name', 'config'])
checkpoints_list = {}
+checkpoints_loaded = collections.OrderedDict()
try:
# this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start.
@@ -30,12 +27,10 @@ except Exception:
pass
-def setup_model(dirname):
- global user_dir
- user_dir = dirname
+def setup_model():
if not os.path.exists(model_path):
os.makedirs(model_path)
- checkpoints_list.clear()
+
list_models()
@@ -45,13 +40,13 @@ def checkpoint_tiles():
def list_models():
checkpoints_list.clear()
- model_list = modelloader.load_models(model_path=model_path, model_url=model_url, command_path=user_dir, ext_filter=[".ckpt"], download_name=model_name)
+ model_list = modelloader.load_models(model_path=model_path, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt"])
def modeltitle(path, shorthash):
abspath = os.path.abspath(path)
- if user_dir is not None and abspath.startswith(user_dir):
- name = abspath.replace(user_dir, '')
+ if shared.cmd_opts.ckpt_dir is not None and abspath.startswith(shared.cmd_opts.ckpt_dir):
+ name = abspath.replace(shared.cmd_opts.ckpt_dir, '')
elif abspath.startswith(model_path):
name = abspath.replace(model_path, '')
else:
@@ -68,14 +63,20 @@ def list_models():
if os.path.exists(cmd_ckpt):
h = model_hash(cmd_ckpt)
title, short_model_name = modeltitle(cmd_ckpt, h)
- checkpoints_list[title] = CheckpointInfo(cmd_ckpt, title, h, short_model_name)
- shared.opts.sd_model_checkpoint = title
+ checkpoints_list[title] = CheckpointInfo(cmd_ckpt, title, h, short_model_name, shared.cmd_opts.config)
+ shared.opts.data['sd_model_checkpoint'] = title
elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file:
print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr)
for filename in model_list:
h = model_hash(filename)
title, short_model_name = modeltitle(filename, h)
- checkpoints_list[title] = CheckpointInfo(filename, title, h, short_model_name)
+
+ basename, _ = os.path.splitext(filename)
+ config = basename + ".yaml"
+ if not os.path.exists(config):
+ config = shared.cmd_opts.config
+
+ checkpoints_list[title] = CheckpointInfo(filename, title, h, short_model_name, config)
def get_closet_checkpoint_match(searchString):
@@ -106,8 +107,11 @@ def select_checkpoint():
if len(checkpoints_list) == 0:
print(f"No checkpoints found. When searching for checkpoints, looked at:", file=sys.stderr)
- print(f" - file {os.path.abspath(shared.cmd_opts.ckpt)}", file=sys.stderr)
- print(f" - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}", file=sys.stderr)
+ if shared.cmd_opts.ckpt is not None:
+ print(f" - file {os.path.abspath(shared.cmd_opts.ckpt)}", file=sys.stderr)
+ print(f" - directory {model_path}", file=sys.stderr)
+ if shared.cmd_opts.ckpt_dir is not None:
+ print(f" - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}", file=sys.stderr)
print(f"Can't run without a checkpoint. Find and place a .ckpt file into any of those locations. The program will exit.", file=sys.stderr)
exit(1)
@@ -118,33 +122,72 @@ def select_checkpoint():
return checkpoint_info
-def load_model_weights(model, checkpoint_file, sd_model_hash):
- print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}")
+def get_state_dict_from_checkpoint(pl_sd):
+ if "state_dict" in pl_sd:
+ return pl_sd["state_dict"]
+
+ return pl_sd
+
+
+def load_model_weights(model, checkpoint_info):
+ checkpoint_file = checkpoint_info.filename
+ sd_model_hash = checkpoint_info.hash
+
+ if checkpoint_info not in checkpoints_loaded:
+ print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}")
- pl_sd = torch.load(checkpoint_file, map_location="cpu")
- if "global_step" in pl_sd:
- print(f"Global Step: {pl_sd['global_step']}")
- sd = pl_sd["state_dict"]
+ pl_sd = torch.load(checkpoint_file, map_location=shared.weight_load_location)
+ if "global_step" in pl_sd:
+ print(f"Global Step: {pl_sd['global_step']}")
- model.load_state_dict(sd, strict=False)
+ sd = get_state_dict_from_checkpoint(pl_sd)
+ model.load_state_dict(sd, strict=False)
- if shared.cmd_opts.opt_channelslast:
- model.to(memory_format=torch.channels_last)
+ if shared.cmd_opts.opt_channelslast:
+ model.to(memory_format=torch.channels_last)
- if not shared.cmd_opts.no_half:
- model.half()
+ if not shared.cmd_opts.no_half:
+ model.half()
+
+ devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16
+ devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16
+
+ vae_file = os.path.splitext(checkpoint_file)[0] + ".vae.pt"
+
+ if not os.path.exists(vae_file) and shared.cmd_opts.vae_path is not None:
+ vae_file = shared.cmd_opts.vae_path
+
+ if os.path.exists(vae_file):
+ print(f"Loading VAE weights from: {vae_file}")
+ vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location)
+ vae_dict = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss"}
+ model.first_stage_model.load_state_dict(vae_dict)
+
+ model.first_stage_model.to(devices.dtype_vae)
+
+ checkpoints_loaded[checkpoint_info] = model.state_dict().copy()
+ while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache:
+ checkpoints_loaded.popitem(last=False) # LRU
+ else:
+ print(f"Loading weights [{sd_model_hash}] from cache")
+ checkpoints_loaded.move_to_end(checkpoint_info)
+ model.load_state_dict(checkpoints_loaded[checkpoint_info])
model.sd_model_hash = sd_model_hash
- model.sd_model_checkpint = checkpoint_file
+ model.sd_model_checkpoint = checkpoint_file
+ model.sd_checkpoint_info = checkpoint_info
def load_model():
from modules import lowvram, sd_hijack
checkpoint_info = select_checkpoint()
- sd_config = OmegaConf.load(shared.cmd_opts.config)
+ if checkpoint_info.config != shared.cmd_opts.config:
+ print(f"Loading config from: {checkpoint_info.config}")
+
+ sd_config = OmegaConf.load(checkpoint_info.config)
sd_model = instantiate_from_config(sd_config.model)
- load_model_weights(sd_model, checkpoint_info.filename, checkpoint_info.hash)
+ load_model_weights(sd_model, checkpoint_info)
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
lowvram.setup_for_low_vram(sd_model, shared.cmd_opts.medvram)
@@ -163,9 +206,14 @@ def reload_model_weights(sd_model, info=None):
from modules import lowvram, devices, sd_hijack
checkpoint_info = info or select_checkpoint()
- if sd_model.sd_model_checkpint == checkpoint_info.filename:
+ if sd_model.sd_model_checkpoint == checkpoint_info.filename:
return
+ if sd_model.sd_checkpoint_info.config != checkpoint_info.config:
+ checkpoints_loaded.clear()
+ shared.sd_model = load_model()
+ return shared.sd_model
+
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
lowvram.send_everything_to_cpu()
else:
@@ -173,7 +221,7 @@ def reload_model_weights(sd_model, info=None):
sd_hijack.model_hijack.undo_hijack(sd_model)
- load_model_weights(sd_model, checkpoint_info.filename, checkpoint_info.hash)
+ load_model_weights(sd_model, checkpoint_info)
sd_hijack.model_hijack.hijack(sd_model)