aboutsummaryrefslogtreecommitdiffstats
path: root/modules/sd_samplers.py
diff options
context:
space:
mode:
authorAUTOMATIC <16777216c@gmail.com>2022-09-19 13:42:56 +0000
committerAUTOMATIC <16777216c@gmail.com>2022-09-19 13:42:56 +0000
commit6d7ca54a1a9f448419acb31a54c5e28f3e4bcc4c (patch)
tree191fdac3aaa1502c161b1757e44886157809e4c3 /modules/sd_samplers.py
parent8a32a71ca3223cf7b0911fe55db2c6dece2bacca (diff)
downloadstable-diffusion-webui-gfx803-6d7ca54a1a9f448419acb31a54c5e28f3e4bcc4c.tar.gz
stable-diffusion-webui-gfx803-6d7ca54a1a9f448419acb31a54c5e28f3e4bcc4c.tar.bz2
stable-diffusion-webui-gfx803-6d7ca54a1a9f448419acb31a54c5e28f3e4bcc4c.zip
added highres fix feature
Diffstat (limited to 'modules/sd_samplers.py')
-rw-r--r--modules/sd_samplers.py55
1 files changed, 32 insertions, 23 deletions
diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py
index af6811a1..1fc9d18c 100644
--- a/modules/sd_samplers.py
+++ b/modules/sd_samplers.py
@@ -38,9 +38,9 @@ samplers = [
samplers_for_img2img = [x for x in samplers if x.name != 'PLMS']
-def setup_img2img_steps(p):
- if opts.img2img_fix_steps:
- steps = int(p.steps / min(p.denoising_strength, 0.999))
+def setup_img2img_steps(p, steps=None):
+ if opts.img2img_fix_steps or steps is not None:
+ steps = int((steps or p.steps) / min(p.denoising_strength, 0.999)) if p.denoising_strength > 0 else 0
t_enc = p.steps - 1
else:
steps = p.steps
@@ -115,8 +115,8 @@ class VanillaStableDiffusionSampler:
self.step += 1
return res
- def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning):
- steps, t_enc = setup_img2img_steps(p)
+ def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None):
+ steps, t_enc = setup_img2img_steps(p, steps)
# existing code fails with cetain step counts, like 9
try:
@@ -127,16 +127,16 @@ class VanillaStableDiffusionSampler:
x1 = self.sampler.stochastic_encode(x, torch.tensor([t_enc] * int(x.shape[0])).to(shared.device), noise=noise)
self.sampler.p_sample_ddim = self.p_sample_ddim_hook
- self.mask = p.mask
- self.nmask = p.nmask
- self.init_latent = p.init_latent
+ self.mask = p.mask if hasattr(p, 'mask') else None
+ self.nmask = p.nmask if hasattr(p, 'nmask') else None
+ self.init_latent = x
self.step = 0
samples = self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning)
return samples
- def sample(self, p, x, conditioning, unconditional_conditioning):
+ def sample(self, p, x, conditioning, unconditional_conditioning, steps=None):
for fieldname in ['p_sample_ddim', 'p_sample_plms']:
if hasattr(self.sampler, fieldname):
setattr(self.sampler, fieldname, self.p_sample_ddim_hook)
@@ -145,11 +145,13 @@ class VanillaStableDiffusionSampler:
self.init_latent = None
self.step = 0
+ steps = steps or p.steps
+
# existing code fails with cetin step counts, like 9
try:
- samples_ddim, _ = self.sampler.sample(S=p.steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x)
+ samples_ddim, _ = self.sampler.sample(S=steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x)
except Exception:
- samples_ddim, _ = self.sampler.sample(S=p.steps+1, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x)
+ samples_ddim, _ = self.sampler.sample(S=steps+1, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x)
return samples_ddim
@@ -186,7 +188,7 @@ class CFGDenoiser(torch.nn.Module):
return denoised
-def extended_trange(count, *args, **kwargs):
+def extended_trange(sampler, count, *args, **kwargs):
state.sampling_steps = count
state.sampling_step = 0
@@ -194,6 +196,9 @@ def extended_trange(count, *args, **kwargs):
if state.interrupted:
break
+ if sampler.stop_at is not None and x > sampler.stop_at:
+ break
+
yield x
state.sampling_step += 1
@@ -222,6 +227,7 @@ class KDiffusionSampler:
self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
self.sampler_noises = None
self.sampler_noise_index = 0
+ self.stop_at = None
def callback_state(self, d):
store_latent(d["denoised"])
@@ -240,8 +246,8 @@ class KDiffusionSampler:
self.sampler_noise_index += 1
return res
- def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning):
- steps, t_enc = setup_img2img_steps(p)
+ def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None):
+ steps, t_enc = setup_img2img_steps(p, steps)
sigmas = self.model_wrap.get_sigmas(steps)
@@ -251,33 +257,36 @@ class KDiffusionSampler:
sigma_sched = sigmas[steps - t_enc - 1:]
- self.model_wrap_cfg.mask = p.mask
- self.model_wrap_cfg.nmask = p.nmask
- self.model_wrap_cfg.init_latent = p.init_latent
+ self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
+ self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
+ self.model_wrap_cfg.init_latent = x
self.model_wrap.step = 0
self.sampler_noise_index = 0
if hasattr(k_diffusion.sampling, 'trange'):
- k_diffusion.sampling.trange = lambda *args, **kwargs: extended_trange(*args, **kwargs)
+ k_diffusion.sampling.trange = lambda *args, **kwargs: extended_trange(self, *args, **kwargs)
if self.sampler_noises is not None:
k_diffusion.sampling.torch = TorchHijack(self)
return self.func(self.model_wrap_cfg, xi, sigma_sched, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state)
- def sample(self, p, x, conditioning, unconditional_conditioning):
- sigmas = self.model_wrap.get_sigmas(p.steps)
+ def sample(self, p, x, conditioning, unconditional_conditioning, steps=None):
+ steps = steps or p.steps
+
+ sigmas = self.model_wrap.get_sigmas(steps)
x = x * sigmas[0]
self.model_wrap_cfg.step = 0
self.sampler_noise_index = 0
if hasattr(k_diffusion.sampling, 'trange'):
- k_diffusion.sampling.trange = lambda *args, **kwargs: extended_trange(*args, **kwargs)
+ k_diffusion.sampling.trange = lambda *args, **kwargs: extended_trange(self, *args, **kwargs)
if self.sampler_noises is not None:
k_diffusion.sampling.torch = TorchHijack(self)
- samples_ddim = self.func(self.model_wrap_cfg, x, sigmas, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state)
- return samples_ddim
+ samples = self.func(self.model_wrap_cfg, x, sigmas, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state)
+
+ return samples