diff options
author | AUTOMATIC <16777216c@gmail.com> | 2022-09-13 18:49:58 +0000 |
---|---|---|
committer | AUTOMATIC <16777216c@gmail.com> | 2022-09-13 18:49:58 +0000 |
commit | 9d40212485febe05a662dd0346e6def83e456288 (patch) | |
tree | c56b55041ae4513ea5762cf07215f377175440d2 /modules/sd_samplers.py | |
parent | 85b97cc49c4766cb47306e71e552871a0791ea29 (diff) | |
download | stable-diffusion-webui-gfx803-9d40212485febe05a662dd0346e6def83e456288.tar.gz stable-diffusion-webui-gfx803-9d40212485febe05a662dd0346e6def83e456288.tar.bz2 stable-diffusion-webui-gfx803-9d40212485febe05a662dd0346e6def83e456288.zip |
first attempt to produce crrect seeds in batch
Diffstat (limited to 'modules/sd_samplers.py')
-rw-r--r-- | modules/sd_samplers.py | 25 |
1 files changed, 25 insertions, 0 deletions
diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py index 7ef507f1..f77fe43f 100644 --- a/modules/sd_samplers.py +++ b/modules/sd_samplers.py @@ -93,6 +93,10 @@ class VanillaStableDiffusionSampler: self.mask = None
self.nmask = None
self.init_latent = None
+ self.sampler_noises = None
+
+ def number_of_needed_noises(self, p):
+ return 0
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning):
t_enc = int(min(p.denoising_strength, 0.999) * p.steps)
@@ -171,16 +175,37 @@ def extended_trange(count, *args, **kwargs): shared.total_tqdm.update()
+original_randn_like = torch.randn_like
+
class KDiffusionSampler:
def __init__(self, funcname, sd_model):
self.model_wrap = k_diffusion.external.CompVisDenoiser(sd_model)
self.funcname = funcname
self.func = getattr(k_diffusion.sampling, self.funcname)
self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
+ self.sampler_noises = None
+ self.sampler_noise_index = 0
+
+ k_diffusion.sampling.torch.randn_like = self.randn_like
def callback_state(self, d):
store_latent(d["denoised"])
+ def number_of_needed_noises(self, p):
+ return p.steps
+
+ def randn_like(self, x):
+ noise = self.sampler_noises[self.sampler_noise_index] if self.sampler_noises is not None and self.sampler_noise_index < len(self.sampler_noises) else None
+
+ if noise is not None and x.shape == noise.shape:
+ res = noise
+ else:
+ print('generating')
+ res = original_randn_like(x)
+
+ self.sampler_noise_index += 1
+ return res
+
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning):
t_enc = int(min(p.denoising_strength, 0.999) * p.steps)
sigmas = self.model_wrap.get_sigmas(p.steps)
|