diff options
author | 不会画画的中医不是好程序员 <yfszzx@gmail.com> | 2022-10-11 13:03:41 +0000 |
---|---|---|
committer | GitHub <noreply@github.com> | 2022-10-11 13:03:41 +0000 |
commit | a36dea9596c8880609401ce4fa7ab83cf70a9b2b (patch) | |
tree | c63a41ad4d2c8b314a526d6e44710391be1426b7 /modules/sd_samplers.py | |
parent | 87d63bbab5c973ac5cec777ef7304d28f1ab3f24 (diff) | |
parent | b0583be0884cd17dafb408fd79b52b2a0a972563 (diff) | |
download | stable-diffusion-webui-gfx803-a36dea9596c8880609401ce4fa7ab83cf70a9b2b.tar.gz stable-diffusion-webui-gfx803-a36dea9596c8880609401ce4fa7ab83cf70a9b2b.tar.bz2 stable-diffusion-webui-gfx803-a36dea9596c8880609401ce4fa7ab83cf70a9b2b.zip |
Merge branch 'master' into master
Diffstat (limited to 'modules/sd_samplers.py')
-rw-r--r-- | modules/sd_samplers.py | 24 |
1 files changed, 17 insertions, 7 deletions
diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py index d168b938..20309e06 100644 --- a/modules/sd_samplers.py +++ b/modules/sd_samplers.py @@ -57,7 +57,7 @@ def set_samplers(): global samplers, samplers_for_img2img
hidden = set(opts.hide_samplers)
- hidden_img2img = set(opts.hide_samplers + ['PLMS', 'DPM fast', 'DPM adaptive'])
+ hidden_img2img = set(opts.hide_samplers + ['PLMS'])
samplers = [x for x in all_samplers if x.name not in hidden]
samplers_for_img2img = [x for x in all_samplers if x.name not in hidden_img2img]
@@ -365,16 +365,26 @@ class KDiffusionSampler: else:
sigmas = self.model_wrap.get_sigmas(steps)
- noise = noise * sigmas[steps - t_enc - 1]
- xi = x + noise
-
- extra_params_kwargs = self.initialize(p)
-
sigma_sched = sigmas[steps - t_enc - 1:]
+ xi = x + noise * sigma_sched[0]
+
+ extra_params_kwargs = self.initialize(p)
+ if 'sigma_min' in inspect.signature(self.func).parameters:
+ ## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last
+ extra_params_kwargs['sigma_min'] = sigma_sched[-2]
+ if 'sigma_max' in inspect.signature(self.func).parameters:
+ extra_params_kwargs['sigma_max'] = sigma_sched[0]
+ if 'n' in inspect.signature(self.func).parameters:
+ extra_params_kwargs['n'] = len(sigma_sched) - 1
+ if 'sigma_sched' in inspect.signature(self.func).parameters:
+ extra_params_kwargs['sigma_sched'] = sigma_sched
+ if 'sigmas' in inspect.signature(self.func).parameters:
+ extra_params_kwargs['sigmas'] = sigma_sched
self.model_wrap_cfg.init_latent = x
- return self.func(self.model_wrap_cfg, xi, sigma_sched, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs)
+ return self.func(self.model_wrap_cfg, xi, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs)
+
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None):
steps = steps or p.steps
|