diff options
author | Vladimir Repin <32306715+mezotaken@users.noreply.github.com> | 2022-10-20 20:49:14 +0000 |
---|---|---|
committer | Vladimir Repin <32306715+mezotaken@users.noreply.github.com> | 2022-10-20 20:49:14 +0000 |
commit | d23a46ceaa76af2847f11172f32c92665c268b1b (patch) | |
tree | cedbb2665b9b917692d53ff339df97e1a35a7b62 /modules/sd_samplers.py | |
parent | d1cb08bfb221cd1b0cfc6078162b4e206ea80a5c (diff) | |
download | stable-diffusion-webui-gfx803-d23a46ceaa76af2847f11172f32c92665c268b1b.tar.gz stable-diffusion-webui-gfx803-d23a46ceaa76af2847f11172f32c92665c268b1b.tar.bz2 stable-diffusion-webui-gfx803-d23a46ceaa76af2847f11172f32c92665c268b1b.zip |
Different approach to skip/interrupt with highres fix
Diffstat (limited to 'modules/sd_samplers.py')
-rw-r--r-- | modules/sd_samplers.py | 4 |
1 files changed, 4 insertions, 0 deletions
diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py index b58e810b..7ff77c01 100644 --- a/modules/sd_samplers.py +++ b/modules/sd_samplers.py @@ -196,6 +196,7 @@ class VanillaStableDiffusionSampler: x1 = self.sampler.stochastic_encode(x, torch.tensor([t_enc] * int(x.shape[0])).to(shared.device), noise=noise)
self.init_latent = x
+ self.last_latent = x
self.step = 0
samples = self.launch_sampling(steps, lambda: self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning))
@@ -206,6 +207,7 @@ class VanillaStableDiffusionSampler: self.initialize(p)
self.init_latent = None
+ self.last_latent = x
self.step = 0
steps = steps or p.steps
@@ -388,6 +390,7 @@ class KDiffusionSampler: extra_params_kwargs['sigmas'] = sigma_sched
self.model_wrap_cfg.init_latent = x
+ self.last_latent = x
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, xi, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs))
@@ -414,6 +417,7 @@ class KDiffusionSampler: else:
extra_params_kwargs['sigmas'] = sigmas
+ self.last_latent = x
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs))
return samples
|