diff options
author | CodeHatchling <steve@codehatch.com> | 2023-12-04 08:27:22 +0000 |
---|---|---|
committer | CodeHatchling <steve@codehatch.com> | 2023-12-04 08:27:22 +0000 |
commit | aaacf4823241450d88315af9d465d6815119fe0d (patch) | |
tree | 66b929be2e3b99ad34115c5251f7f6c40695fe68 /modules/sd_samplers_cfg_denoiser.py | |
parent | 552f8bc832cd21ee0338e08b6a701687d0d79fad (diff) | |
download | stable-diffusion-webui-gfx803-aaacf4823241450d88315af9d465d6815119fe0d.tar.gz stable-diffusion-webui-gfx803-aaacf4823241450d88315af9d465d6815119fe0d.tar.bz2 stable-diffusion-webui-gfx803-aaacf4823241450d88315af9d465d6815119fe0d.zip |
Organized the settings and UI of soft inpainting to allow for toggling the feature, and centralizes default values to reduce the amount of copy-pasta.
Diffstat (limited to 'modules/sd_samplers_cfg_denoiser.py')
-rw-r--r-- | modules/sd_samplers_cfg_denoiser.py | 35 |
1 files changed, 24 insertions, 11 deletions
diff --git a/modules/sd_samplers_cfg_denoiser.py b/modules/sd_samplers_cfg_denoiser.py index efbe7a40..0ee0b7dd 100644 --- a/modules/sd_samplers_cfg_denoiser.py +++ b/modules/sd_samplers_cfg_denoiser.py @@ -6,6 +6,7 @@ import modules.shared as shared from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback
from modules.script_callbacks import CFGDenoisedParams, cfg_denoised_callback
from modules.script_callbacks import AfterCFGCallbackParams, cfg_after_cfg_callback
+import modules.soft_inpainting as si
def catenate_conds(conds):
@@ -43,9 +44,7 @@ class CFGDenoiser(torch.nn.Module): self.model_wrap = None
self.mask = None
self.nmask = None
- self.mask_blend_power = 1
- self.mask_blend_scale = 0.5
- self.inpaint_detail_preservation = 4
+ self.soft_inpainting: si.SoftInpaintingParameters = None
self.init_latent = None
self.steps = None
"""number of steps as specified by user in UI"""
@@ -95,7 +94,8 @@ class CFGDenoiser(torch.nn.Module): self.sampler.sampler_extra_args['uncond'] = uc
def forward(self, x, sigma, uncond, cond, cond_scale, s_min_uncond, image_cond):
- def latent_blend(a, b, t):
+ def latent_blend(a, b, t, one_minus_t=None):
+
"""
Interpolates two latent image representations according to the parameter t,
where the interpolated vectors' magnitudes are also interpolated separately.
@@ -104,7 +104,11 @@ class CFGDenoiser(torch.nn.Module): """
# NOTE: We use inplace operations wherever possible.
- one_minus_t = 1 - t
+ if one_minus_t is None:
+ one_minus_t = 1 - t
+
+ if self.soft_inpainting is None:
+ return a * one_minus_t + b * t
# Linearly interpolate the image vectors.
a_scaled = a * one_minus_t
@@ -119,10 +123,10 @@ class CFGDenoiser(torch.nn.Module): current_magnitude = torch.norm(image_interp, p=2, dim=1).to(torch.float64).add_(0.00001)
# Interpolate the powered magnitudes, then un-power them (bring them back to a power of 1).
- a_magnitude = torch.norm(a, p=2, dim=1).to(torch.float64).pow_(self.inpaint_detail_preservation) * one_minus_t
- b_magnitude = torch.norm(b, p=2, dim=1).to(torch.float64).pow_(self.inpaint_detail_preservation) * t
+ a_magnitude = torch.norm(a, p=2, dim=1).to(torch.float64).pow_(self.soft_inpainting.inpaint_detail_preservation) * one_minus_t
+ b_magnitude = torch.norm(b, p=2, dim=1).to(torch.float64).pow_(self.soft_inpainting.inpaint_detail_preservation) * t
desired_magnitude = a_magnitude
- desired_magnitude.add_(b_magnitude).pow_(1 / self.inpaint_detail_preservation)
+ desired_magnitude.add_(b_magnitude).pow_(1 / self.soft_inpainting.inpaint_detail_preservation)
del a_magnitude, b_magnitude, one_minus_t
# Change the linearly interpolated image vectors' magnitudes to the value we want.
@@ -156,7 +160,10 @@ class CFGDenoiser(torch.nn.Module): NOTE: "mask" is not used
"""
- return torch.pow(nmask, (_sigma ** self.mask_blend_power) * self.mask_blend_scale)
+ if self.soft_inpainting is None:
+ return nmask
+
+ return torch.pow(nmask, (_sigma ** self.soft_inpainting.mask_blend_power) * self.soft_inpainting.mask_blend_scale)
if state.interrupted or state.skipped:
raise sd_samplers_common.InterruptedException
@@ -176,7 +183,10 @@ class CFGDenoiser(torch.nn.Module): # Blend in the original latents (before)
if self.mask_before_denoising and self.mask is not None:
- x = latent_blend(self.init_latent, x, get_modified_nmask(self.nmask, sigma))
+ if self.soft_inpainting is None:
+ x = latent_blend(self.init_latent, x, self.nmask, self.mask)
+ else:
+ x = latent_blend(self.init_latent, x, get_modified_nmask(self.nmask, sigma))
batch_size = len(conds_list)
repeats = [len(conds_list[i]) for i in range(batch_size)]
@@ -279,7 +289,10 @@ class CFGDenoiser(torch.nn.Module): # Blend in the original latents (after)
if not self.mask_before_denoising and self.mask is not None:
- denoised = latent_blend(self.init_latent, denoised, get_modified_nmask(self.nmask, sigma))
+ if self.soft_inpainting is None:
+ denoised = latent_blend(self.init_latent, denoised, self.nmask, self.mask)
+ else:
+ denoised = latent_blend(self.init_latent, denoised, get_modified_nmask(self.nmask, sigma))
self.sampler.last_latent = self.get_pred_x0(torch.cat([x_in[i:i + 1] for i in denoised_image_indexes]), torch.cat([x_out[i:i + 1] for i in denoised_image_indexes]), sigma)
|