diff options
author | AUTOMATIC1111 <16777216c@gmail.com> | 2023-08-31 04:38:34 +0000 |
---|---|---|
committer | AUTOMATIC1111 <16777216c@gmail.com> | 2023-08-31 04:38:34 +0000 |
commit | 5ef669de080814067961f28357256e8fe27544f4 (patch) | |
tree | 655f4582e692f0fc3667b3b668ad365ac3ab92ae /modules/sd_samplers_extra.py | |
parent | c9c8485bc1e8720aba70f029d25cba1c4abf2b5c (diff) | |
parent | e7965a5eb804a51e949df07c66c0b7c61ab7fa7b (diff) | |
download | stable-diffusion-webui-gfx803-5ef669de080814067961f28357256e8fe27544f4.tar.gz stable-diffusion-webui-gfx803-5ef669de080814067961f28357256e8fe27544f4.tar.bz2 stable-diffusion-webui-gfx803-5ef669de080814067961f28357256e8fe27544f4.zip |
Merge branch 'release_candidate'
Diffstat (limited to 'modules/sd_samplers_extra.py')
-rw-r--r-- | modules/sd_samplers_extra.py | 74 |
1 files changed, 74 insertions, 0 deletions
diff --git a/modules/sd_samplers_extra.py b/modules/sd_samplers_extra.py new file mode 100644 index 00000000..1b981ca8 --- /dev/null +++ b/modules/sd_samplers_extra.py @@ -0,0 +1,74 @@ +import torch
+import tqdm
+import k_diffusion.sampling
+
+
+@torch.no_grad()
+def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., restart_list=None):
+ """Implements restart sampling in Restart Sampling for Improving Generative Processes (2023)
+ Restart_list format: {min_sigma: [ restart_steps, restart_times, max_sigma]}
+ If restart_list is None: will choose restart_list automatically, otherwise will use the given restart_list
+ """
+ extra_args = {} if extra_args is None else extra_args
+ s_in = x.new_ones([x.shape[0]])
+ step_id = 0
+ from k_diffusion.sampling import to_d, get_sigmas_karras
+
+ def heun_step(x, old_sigma, new_sigma, second_order=True):
+ nonlocal step_id
+ denoised = model(x, old_sigma * s_in, **extra_args)
+ d = to_d(x, old_sigma, denoised)
+ if callback is not None:
+ callback({'x': x, 'i': step_id, 'sigma': new_sigma, 'sigma_hat': old_sigma, 'denoised': denoised})
+ dt = new_sigma - old_sigma
+ if new_sigma == 0 or not second_order:
+ # Euler method
+ x = x + d * dt
+ else:
+ # Heun's method
+ x_2 = x + d * dt
+ denoised_2 = model(x_2, new_sigma * s_in, **extra_args)
+ d_2 = to_d(x_2, new_sigma, denoised_2)
+ d_prime = (d + d_2) / 2
+ x = x + d_prime * dt
+ step_id += 1
+ return x
+
+ steps = sigmas.shape[0] - 1
+ if restart_list is None:
+ if steps >= 20:
+ restart_steps = 9
+ restart_times = 1
+ if steps >= 36:
+ restart_steps = steps // 4
+ restart_times = 2
+ sigmas = get_sigmas_karras(steps - restart_steps * restart_times, sigmas[-2].item(), sigmas[0].item(), device=sigmas.device)
+ restart_list = {0.1: [restart_steps + 1, restart_times, 2]}
+ else:
+ restart_list = {}
+
+ restart_list = {int(torch.argmin(abs(sigmas - key), dim=0)): value for key, value in restart_list.items()}
+
+ step_list = []
+ for i in range(len(sigmas) - 1):
+ step_list.append((sigmas[i], sigmas[i + 1]))
+ if i + 1 in restart_list:
+ restart_steps, restart_times, restart_max = restart_list[i + 1]
+ min_idx = i + 1
+ max_idx = int(torch.argmin(abs(sigmas - restart_max), dim=0))
+ if max_idx < min_idx:
+ sigma_restart = get_sigmas_karras(restart_steps, sigmas[min_idx].item(), sigmas[max_idx].item(), device=sigmas.device)[:-1]
+ while restart_times > 0:
+ restart_times -= 1
+ step_list.extend([(old_sigma, new_sigma) for (old_sigma, new_sigma) in zip(sigma_restart[:-1], sigma_restart[1:])])
+
+ last_sigma = None
+ for old_sigma, new_sigma in tqdm.tqdm(step_list, disable=disable):
+ if last_sigma is None:
+ last_sigma = old_sigma
+ elif last_sigma < old_sigma:
+ x = x + k_diffusion.sampling.torch.randn_like(x) * s_noise * (old_sigma ** 2 - last_sigma ** 2) ** 0.5
+ x = heun_step(x, old_sigma, new_sigma)
+ last_sigma = new_sigma
+
+ return x
|