aboutsummaryrefslogtreecommitdiffstats
path: root/modules/sd_samplers_kdiffusion.py
diff options
context:
space:
mode:
authorAUTOMATIC1111 <16777216c@gmail.com>2023-08-10 14:05:32 +0000
committerGitHub <noreply@github.com>2023-08-10 14:05:32 +0000
commit36762f0eaf04c270dde23849cb198446ecdc4100 (patch)
tree879b63e94d986f8d4fb30d65ee5aa4ae45f3e640 /modules/sd_samplers_kdiffusion.py
parent959404e0e29531d24f2e02088bf0399f4b9db15b (diff)
parentac8a5d18d3ede6bcb8fa5a3da1c7c28e064cd65d (diff)
downloadstable-diffusion-webui-gfx803-36762f0eaf04c270dde23849cb198446ecdc4100.tar.gz
stable-diffusion-webui-gfx803-36762f0eaf04c270dde23849cb198446ecdc4100.tar.bz2
stable-diffusion-webui-gfx803-36762f0eaf04c270dde23849cb198446ecdc4100.zip
Merge pull request #12371 from AUTOMATIC1111/refiner
initial refiner support
Diffstat (limited to 'modules/sd_samplers_kdiffusion.py')
-rw-r--r--modules/sd_samplers_kdiffusion.py29
1 files changed, 18 insertions, 11 deletions
diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py
index 5613b8c1..95a43cef 100644
--- a/modules/sd_samplers_kdiffusion.py
+++ b/modules/sd_samplers_kdiffusion.py
@@ -1,8 +1,7 @@
import torch
import inspect
import k_diffusion.sampling
-from modules import sd_samplers_common, sd_samplers_extra
-from modules.sd_samplers_cfg_denoiser import CFGDenoiser
+from modules import sd_samplers_common, sd_samplers_extra, sd_samplers_cfg_denoiser
from modules.shared import opts
import modules.shared as shared
@@ -53,17 +52,24 @@ k_diffusion_scheduler = {
}
+class CFGDenoiserKDiffusion(sd_samplers_cfg_denoiser.CFGDenoiser):
+ @property
+ def inner_model(self):
+ if self.model_wrap is None:
+ denoiser = k_diffusion.external.CompVisVDenoiser if shared.sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser
+ self.model_wrap = denoiser(shared.sd_model, quantize=shared.opts.enable_quantization)
+
+ return self.model_wrap
+
+
class KDiffusionSampler(sd_samplers_common.Sampler):
def __init__(self, funcname, sd_model):
-
super().__init__(funcname)
- self.extra_params = sampler_extra_params.get(funcname, [])
self.func = funcname if callable(funcname) else getattr(k_diffusion.sampling, self.funcname)
- denoiser = k_diffusion.external.CompVisVDenoiser if sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser
- self.model_wrap = denoiser(sd_model, quantize=shared.opts.enable_quantization)
- self.model_wrap_cfg = CFGDenoiser(self.model_wrap, self)
+ self.model_wrap_cfg = CFGDenoiserKDiffusion(self)
+ self.model_wrap = self.model_wrap_cfg.inner_model
def get_sigmas(self, p, steps):
discard_next_to_last_sigma = self.config is not None and self.config.options.get('discard_next_to_last_sigma', False)
@@ -144,7 +150,7 @@ class KDiffusionSampler(sd_samplers_common.Sampler):
self.model_wrap_cfg.init_latent = x
self.last_latent = x
- extra_args = {
+ self.sampler_extra_args = {
'cond': conditioning,
'image_cond': image_conditioning,
'uncond': unconditional_conditioning,
@@ -152,7 +158,7 @@ class KDiffusionSampler(sd_samplers_common.Sampler):
's_min_uncond': self.s_min_uncond
}
- samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
+ samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
if self.model_wrap_cfg.padded_cond_uncond:
p.extra_generation_params["Pad conds"] = True
@@ -184,13 +190,14 @@ class KDiffusionSampler(sd_samplers_common.Sampler):
extra_params_kwargs['noise_sampler'] = noise_sampler
self.last_latent = x
- samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={
+ self.sampler_extra_args = {
'cond': conditioning,
'image_cond': image_conditioning,
'uncond': unconditional_conditioning,
'cond_scale': p.cfg_scale,
's_min_uncond': self.s_min_uncond
- }, disable=False, callback=self.callback_state, **extra_params_kwargs))
+ }
+ samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
if self.model_wrap_cfg.padded_cond_uncond:
p.extra_generation_params["Pad conds"] = True