diff options
author | lambertae <dengm@mit.edu> | 2023-07-20 06:24:18 +0000 |
---|---|---|
committer | lambertae <dengm@mit.edu> | 2023-07-20 06:24:18 +0000 |
commit | ddbf4a73f5c0cfe63ca0988b8e642d3b977a3fa9 (patch) | |
tree | 9cdf2c49074f7b828f7438c2387d6f0dc9fc3001 /modules/sd_samplers_kdiffusion.py | |
parent | 7bb0fbed136c6a345b211e09102659fd89362576 (diff) | |
download | stable-diffusion-webui-gfx803-ddbf4a73f5c0cfe63ca0988b8e642d3b977a3fa9.tar.gz stable-diffusion-webui-gfx803-ddbf4a73f5c0cfe63ca0988b8e642d3b977a3fa9.tar.bz2 stable-diffusion-webui-gfx803-ddbf4a73f5c0cfe63ca0988b8e642d3b977a3fa9.zip |
restart-sampler with correct steps
Diffstat (limited to 'modules/sd_samplers_kdiffusion.py')
-rw-r--r-- | modules/sd_samplers_kdiffusion.py | 22 |
1 files changed, 14 insertions, 8 deletions
diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index db7013f2..ed5e6c79 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -38,20 +38,19 @@ samplers_k_diffusion = [ def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1.):
"""Implements restart sampling in Restart Sampling for Improving Generative Processes (2023)"""
'''Restart_list format: {min_sigma: [ restart_steps, restart_times, max_sigma]}'''
- restart_list = {0.1: [10, 2, 2]}
from tqdm.auto import trange
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
step_id = 0
from k_diffusion.sampling import to_d, append_zero
- def heun_step(x, old_sigma, new_sigma):
+ def heun_step(x, old_sigma, new_sigma, second_order = True):
nonlocal step_id
denoised = model(x, old_sigma * s_in, **extra_args)
d = to_d(x, old_sigma, denoised)
if callback is not None:
callback({'x': x, 'i': step_id, 'sigma': new_sigma, 'sigma_hat': old_sigma, 'denoised': denoised})
dt = new_sigma - old_sigma
- if new_sigma == 0:
+ if new_sigma == 0 or not second_order:
# Euler method
x = x + d * dt
else:
@@ -63,11 +62,6 @@ def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=No x = x + d_prime * dt
step_id += 1
return x
- # print(sigmas)
- temp_list = dict()
- for key, value in restart_list.items():
- temp_list[int(torch.argmin(abs(sigmas - key), dim=0))] = value
- restart_list = temp_list
def get_sigmas_karras(n, sigma_min, sigma_max, rho=7., device='cpu'):
ramp = torch.linspace(0, 1, n).to(device)
min_inv_rho = (sigma_min ** (1 / rho))
@@ -78,6 +72,18 @@ def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=No max_inv_rho = max_inv_rho.to(device)
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return append_zero(sigmas).to(device)
+ steps = sigmas.shape[0] - 1
+ if steps >= 20:
+ restart_steps = 9
+ restart_times = 2 if steps >= 36 else 1
+ sigmas = get_sigmas_karras(steps - restart_steps * restart_times, sigmas[-2], sigmas[0], device=sigmas.device)
+ restart_list = {0.1: [restart_steps + 1, restart_times, 2]}
+ else:
+ restart_list = dict()
+ temp_list = dict()
+ for key, value in restart_list.items():
+ temp_list[int(torch.argmin(abs(sigmas - key), dim=0))] = value
+ restart_list = temp_list
for i in trange(len(sigmas) - 1, disable=disable):
x = heun_step(x, sigmas[i], sigmas[i+1])
if i + 1 in restart_list:
|