aboutsummaryrefslogtreecommitdiffstats
path: root/modules/sd_samplers_kdiffusion.py
diff options
context:
space:
mode:
authorAUTOMATIC1111 <16777216c@gmail.com>2023-08-06 14:01:07 +0000
committerAUTOMATIC1111 <16777216c@gmail.com>2023-08-06 14:01:07 +0000
commitf1975b0213f5be400889ec04b3891d1cb571fe20 (patch)
tree874e4bd221209a5197f1f578f907cdc28b33a6b7 /modules/sd_samplers_kdiffusion.py
parent57e8a11d17a6646fdf551320f5f714fba752987a (diff)
downloadstable-diffusion-webui-gfx803-f1975b0213f5be400889ec04b3891d1cb571fe20.tar.gz
stable-diffusion-webui-gfx803-f1975b0213f5be400889ec04b3891d1cb571fe20.tar.bz2
stable-diffusion-webui-gfx803-f1975b0213f5be400889ec04b3891d1cb571fe20.zip
initial refiner support
Diffstat (limited to 'modules/sd_samplers_kdiffusion.py')
-rw-r--r--modules/sd_samplers_kdiffusion.py30
1 files changed, 24 insertions, 6 deletions
diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py
index db71a549..be1bd35e 100644
--- a/modules/sd_samplers_kdiffusion.py
+++ b/modules/sd_samplers_kdiffusion.py
@@ -2,7 +2,7 @@ from collections import deque
import torch
import inspect
import k_diffusion.sampling
-from modules import prompt_parser, devices, sd_samplers_common, sd_samplers_extra
+from modules import prompt_parser, devices, sd_samplers_common, sd_samplers_extra, sd_models
from modules.processing import StableDiffusionProcessing
from modules.shared import opts, state
@@ -87,15 +87,25 @@ class CFGDenoiser(torch.nn.Module):
negative prompt.
"""
- def __init__(self, model):
+ def __init__(self):
super().__init__()
- self.inner_model = model
+ self.model_wrap = None
self.mask = None
self.nmask = None
self.init_latent = None
+ self.steps = None
self.step = 0
self.image_cfg_scale = None
self.padded_cond_uncond = False
+ self.p = None
+
+ @property
+ def inner_model(self):
+ if self.model_wrap is None:
+ denoiser = k_diffusion.external.CompVisVDenoiser if shared.sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser
+ self.model_wrap = denoiser(shared.sd_model, quantize=shared.opts.enable_quantization)
+
+ return self.model_wrap
def combine_denoised(self, x_out, conds_list, uncond, cond_scale):
denoised_uncond = x_out[-uncond.shape[0]:]
@@ -113,10 +123,15 @@ class CFGDenoiser(torch.nn.Module):
return denoised
+ def update_inner_model(self):
+ self.model_wrap = None
+
def forward(self, x, sigma, uncond, cond, cond_scale, s_min_uncond, image_cond):
if state.interrupted or state.skipped:
raise sd_samplers_common.InterruptedException
+ sd_samplers_common.apply_refiner(self)
+
# at self.image_cfg_scale == 1.0 produced results for edit model are the same as with normal sampling,
# so is_edit_model is set to False to support AND composition.
is_edit_model = shared.sd_model.cond_stage_key == "edit" and self.image_cfg_scale is not None and self.image_cfg_scale != 1.0
@@ -267,13 +282,13 @@ class TorchHijack:
class KDiffusionSampler:
def __init__(self, funcname, sd_model):
- denoiser = k_diffusion.external.CompVisVDenoiser if sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser
- self.model_wrap = denoiser(sd_model, quantize=shared.opts.enable_quantization)
+ self.p = None
self.funcname = funcname
self.func = funcname if callable(funcname) else getattr(k_diffusion.sampling, self.funcname)
self.extra_params = sampler_extra_params.get(funcname, [])
- self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
+ self.model_wrap_cfg = CFGDenoiser()
+ self.model_wrap = self.model_wrap_cfg.inner_model
self.sampler_noises = None
self.stop_at = None
self.eta = None
@@ -305,6 +320,7 @@ class KDiffusionSampler:
shared.total_tqdm.update()
def launch_sampling(self, steps, func):
+ self.model_wrap_cfg.steps = steps
state.sampling_steps = steps
state.sampling_step = 0
@@ -324,6 +340,8 @@ class KDiffusionSampler:
return p.steps
def initialize(self, p: StableDiffusionProcessing):
+ self.p = p
+ self.model_wrap_cfg.p = p
self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
self.model_wrap_cfg.step = 0