aboutsummaryrefslogtreecommitdiffstats
path: root/modules/sd_samplers_timesteps_impl.py
diff options
context:
space:
mode:
authorCodeHatchling <steve@codehatch.com>2023-12-05 03:38:13 +0000
committerCodeHatchling <steve@codehatch.com>2023-12-05 03:38:13 +0000
commit38864816fa8c83d079a49f94674ca3dede9dcaad (patch)
treedfd1b97ad7c5c66ffc5c8641c6e7cc635441e82b /modules/sd_samplers_timesteps_impl.py
parent49bbf1140731036875573bb7c44aa7e74623c856 (diff)
parent22e23dbf29b0bbc807daa57318c31145f8dd0774 (diff)
downloadstable-diffusion-webui-gfx803-38864816fa8c83d079a49f94674ca3dede9dcaad.tar.gz
stable-diffusion-webui-gfx803-38864816fa8c83d079a49f94674ca3dede9dcaad.tar.bz2
stable-diffusion-webui-gfx803-38864816fa8c83d079a49f94674ca3dede9dcaad.zip
Merge remote-tracking branch 'origin2/dev' into soft-inpainting
# Conflicts: # modules/processing.py
Diffstat (limited to 'modules/sd_samplers_timesteps_impl.py')
-rw-r--r--modules/sd_samplers_timesteps_impl.py4
1 files changed, 2 insertions, 2 deletions
diff --git a/modules/sd_samplers_timesteps_impl.py b/modules/sd_samplers_timesteps_impl.py
index a72daafd..930a64af 100644
--- a/modules/sd_samplers_timesteps_impl.py
+++ b/modules/sd_samplers_timesteps_impl.py
@@ -11,7 +11,7 @@ from modules.models.diffusion.uni_pc import uni_pc
def ddim(model, x, timesteps, extra_args=None, callback=None, disable=None, eta=0.0):
alphas_cumprod = model.inner_model.inner_model.alphas_cumprod
alphas = alphas_cumprod[timesteps]
- alphas_prev = alphas_cumprod[torch.nn.functional.pad(timesteps[:-1], pad=(1, 0))].to(torch.float64 if x.device.type != 'mps' else torch.float32)
+ alphas_prev = alphas_cumprod[torch.nn.functional.pad(timesteps[:-1], pad=(1, 0))].to(torch.float64 if x.device.type != 'mps' and x.device.type != 'xpu' else torch.float32)
sqrt_one_minus_alphas = torch.sqrt(1 - alphas)
sigmas = eta * np.sqrt((1 - alphas_prev.cpu().numpy()) / (1 - alphas.cpu()) * (1 - alphas.cpu() / alphas_prev.cpu().numpy()))
@@ -43,7 +43,7 @@ def ddim(model, x, timesteps, extra_args=None, callback=None, disable=None, eta=
def plms(model, x, timesteps, extra_args=None, callback=None, disable=None):
alphas_cumprod = model.inner_model.inner_model.alphas_cumprod
alphas = alphas_cumprod[timesteps]
- alphas_prev = alphas_cumprod[torch.nn.functional.pad(timesteps[:-1], pad=(1, 0))].to(torch.float64 if x.device.type != 'mps' else torch.float32)
+ alphas_prev = alphas_cumprod[torch.nn.functional.pad(timesteps[:-1], pad=(1, 0))].to(torch.float64 if x.device.type != 'mps' and x.device.type != 'xpu' else torch.float32)
sqrt_one_minus_alphas = torch.sqrt(1 - alphas)
extra_args = {} if extra_args is None else extra_args