diff options
author | AUTOMATIC1111 <16777216c@gmail.com> | 2023-01-13 11:57:38 +0000 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-01-13 11:57:38 +0000 |
commit | 9cd7716753c5be47f76b8e5555cc3e7c0f17d34d (patch) | |
tree | 345be78dd1991b77fcf4519bc44097e975e0b0c4 /modules/sd_vae.py | |
parent | 18f86e41f6f289042c075bff1498e620ab997b8c (diff) | |
parent | 544e7a233e994f379dd67df08f5f519290b10293 (diff) | |
download | stable-diffusion-webui-gfx803-9cd7716753c5be47f76b8e5555cc3e7c0f17d34d.tar.gz stable-diffusion-webui-gfx803-9cd7716753c5be47f76b8e5555cc3e7c0f17d34d.tar.bz2 stable-diffusion-webui-gfx803-9cd7716753c5be47f76b8e5555cc3e7c0f17d34d.zip |
Merge branch 'master' into tensorboard
Diffstat (limited to 'modules/sd_vae.py')
-rw-r--r-- | modules/sd_vae.py | 243 |
1 files changed, 243 insertions, 0 deletions
diff --git a/modules/sd_vae.py b/modules/sd_vae.py new file mode 100644 index 00000000..0a49daa1 --- /dev/null +++ b/modules/sd_vae.py @@ -0,0 +1,243 @@ +import torch +import safetensors.torch +import os +import collections +from collections import namedtuple +from modules import shared, devices, script_callbacks, sd_models +from modules.paths import models_path +import glob +from copy import deepcopy + + +model_dir = "Stable-diffusion" +model_path = os.path.abspath(os.path.join(models_path, model_dir)) +vae_dir = "VAE" +vae_path = os.path.abspath(os.path.join(models_path, vae_dir)) + + +vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"} + + +default_vae_dict = {"auto": "auto", "None": None, None: None} +default_vae_list = ["auto", "None"] + + +default_vae_values = [default_vae_dict[x] for x in default_vae_list] +vae_dict = dict(default_vae_dict) +vae_list = list(default_vae_list) +first_load = True + + +base_vae = None +loaded_vae_file = None +checkpoint_info = None + +checkpoints_loaded = collections.OrderedDict() + +def get_base_vae(model): + if base_vae is not None and checkpoint_info == model.sd_checkpoint_info and model: + return base_vae + return None + + +def store_base_vae(model): + global base_vae, checkpoint_info + if checkpoint_info != model.sd_checkpoint_info: + assert not loaded_vae_file, "Trying to store non-base VAE!" + base_vae = deepcopy(model.first_stage_model.state_dict()) + checkpoint_info = model.sd_checkpoint_info + + +def delete_base_vae(): + global base_vae, checkpoint_info + base_vae = None + checkpoint_info = None + + +def restore_base_vae(model): + global loaded_vae_file + if base_vae is not None and checkpoint_info == model.sd_checkpoint_info: + print("Restoring base VAE") + _load_vae_dict(model, base_vae) + loaded_vae_file = None + delete_base_vae() + + +def get_filename(filepath): + return os.path.splitext(os.path.basename(filepath))[0] + + +def refresh_vae_list(vae_path=vae_path, model_path=model_path): + global vae_dict, vae_list + res = {} + candidates = [ + *glob.iglob(os.path.join(model_path, '**/*.vae.ckpt'), recursive=True), + *glob.iglob(os.path.join(model_path, '**/*.vae.pt'), recursive=True), + *glob.iglob(os.path.join(model_path, '**/*.vae.safetensors'), recursive=True), + *glob.iglob(os.path.join(vae_path, '**/*.ckpt'), recursive=True), + *glob.iglob(os.path.join(vae_path, '**/*.pt'), recursive=True), + *glob.iglob(os.path.join(vae_path, '**/*.safetensors'), recursive=True), + ] + if shared.cmd_opts.vae_path is not None and os.path.isfile(shared.cmd_opts.vae_path): + candidates.append(shared.cmd_opts.vae_path) + for filepath in candidates: + name = get_filename(filepath) + res[name] = filepath + vae_list.clear() + vae_list.extend(default_vae_list) + vae_list.extend(list(res.keys())) + vae_dict.clear() + vae_dict.update(res) + vae_dict.update(default_vae_dict) + return vae_list + + +def get_vae_from_settings(vae_file="auto"): + # else, we load from settings, if not set to be default + if vae_file == "auto" and shared.opts.sd_vae is not None: + # if saved VAE settings isn't recognized, fallback to auto + vae_file = vae_dict.get(shared.opts.sd_vae, "auto") + # if VAE selected but not found, fallback to auto + if vae_file not in default_vae_values and not os.path.isfile(vae_file): + vae_file = "auto" + print(f"Selected VAE doesn't exist: {vae_file}") + return vae_file + + +def resolve_vae(checkpoint_file=None, vae_file="auto"): + global first_load, vae_dict, vae_list + + # if vae_file argument is provided, it takes priority, but not saved + if vae_file and vae_file not in default_vae_list: + if not os.path.isfile(vae_file): + print(f"VAE provided as function argument doesn't exist: {vae_file}") + vae_file = "auto" + # for the first load, if vae-path is provided, it takes priority, saved, and failure is reported + if first_load and shared.cmd_opts.vae_path is not None: + if os.path.isfile(shared.cmd_opts.vae_path): + vae_file = shared.cmd_opts.vae_path + shared.opts.data['sd_vae'] = get_filename(vae_file) + else: + print(f"VAE provided as command line argument doesn't exist: {vae_file}") + # fallback to selector in settings, if vae selector not set to act as default fallback + if not shared.opts.sd_vae_as_default: + vae_file = get_vae_from_settings(vae_file) + # vae-path cmd arg takes priority for auto + if vae_file == "auto" and shared.cmd_opts.vae_path is not None: + if os.path.isfile(shared.cmd_opts.vae_path): + vae_file = shared.cmd_opts.vae_path + print(f"Using VAE provided as command line argument: {vae_file}") + # if still not found, try look for ".vae.pt" beside model + model_path = os.path.splitext(checkpoint_file)[0] + if vae_file == "auto": + vae_file_try = model_path + ".vae.pt" + if os.path.isfile(vae_file_try): + vae_file = vae_file_try + print(f"Using VAE found similar to selected model: {vae_file}") + # if still not found, try look for ".vae.ckpt" beside model + if vae_file == "auto": + vae_file_try = model_path + ".vae.ckpt" + if os.path.isfile(vae_file_try): + vae_file = vae_file_try + print(f"Using VAE found similar to selected model: {vae_file}") + # if still not found, try look for ".vae.safetensors" beside model + if vae_file == "auto": + vae_file_try = model_path + ".vae.safetensors" + if os.path.isfile(vae_file_try): + vae_file = vae_file_try + print(f"Using VAE found similar to selected model: {vae_file}") + # No more fallbacks for auto + if vae_file == "auto": + vae_file = None + # Last check, just because + if vae_file and not os.path.exists(vae_file): + vae_file = None + + return vae_file + + +def load_vae(model, vae_file=None): + global first_load, vae_dict, vae_list, loaded_vae_file + # save_settings = False + + cache_enabled = shared.opts.sd_vae_checkpoint_cache > 0 + + if vae_file: + if cache_enabled and vae_file in checkpoints_loaded: + # use vae checkpoint cache + print(f"Loading VAE weights [{get_filename(vae_file)}] from cache") + store_base_vae(model) + _load_vae_dict(model, checkpoints_loaded[vae_file]) + else: + assert os.path.isfile(vae_file), f"VAE file doesn't exist: {vae_file}" + print(f"Loading VAE weights from: {vae_file}") + store_base_vae(model) + + vae_ckpt = sd_models.read_state_dict(vae_file, map_location=shared.weight_load_location) + vae_dict_1 = {k: v for k, v in vae_ckpt.items() if k[0:4] != "loss" and k not in vae_ignore_keys} + _load_vae_dict(model, vae_dict_1) + + if cache_enabled: + # cache newly loaded vae + checkpoints_loaded[vae_file] = vae_dict_1.copy() + + # clean up cache if limit is reached + if cache_enabled: + while len(checkpoints_loaded) > shared.opts.sd_vae_checkpoint_cache + 1: # we need to count the current model + checkpoints_loaded.popitem(last=False) # LRU + + # If vae used is not in dict, update it + # It will be removed on refresh though + vae_opt = get_filename(vae_file) + if vae_opt not in vae_dict: + vae_dict[vae_opt] = vae_file + vae_list.append(vae_opt) + elif loaded_vae_file: + restore_base_vae(model) + + loaded_vae_file = vae_file + + first_load = False + + +# don't call this from outside +def _load_vae_dict(model, vae_dict_1): + model.first_stage_model.load_state_dict(vae_dict_1) + model.first_stage_model.to(devices.dtype_vae) + + +def clear_loaded_vae(): + global loaded_vae_file + loaded_vae_file = None + + +def reload_vae_weights(sd_model=None, vae_file="auto"): + from modules import lowvram, devices, sd_hijack + + if not sd_model: + sd_model = shared.sd_model + + checkpoint_info = sd_model.sd_checkpoint_info + checkpoint_file = checkpoint_info.filename + vae_file = resolve_vae(checkpoint_file, vae_file=vae_file) + + if loaded_vae_file == vae_file: + return + + if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: + lowvram.send_everything_to_cpu() + else: + sd_model.to(devices.cpu) + + sd_hijack.model_hijack.undo_hijack(sd_model) + + load_vae(sd_model, vae_file) + + sd_hijack.model_hijack.hijack(sd_model) + script_callbacks.model_loaded_callback(sd_model) + + if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram: + sd_model.to(devices.device) + + print("VAE Weights loaded.") + return sd_model |