diff options
author | AUTOMATIC1111 <16777216c@gmail.com> | 2023-01-07 09:26:55 +0000 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-01-07 09:26:55 +0000 |
commit | c295e4a2446bcc2663f497ba8afa14cec80de332 (patch) | |
tree | 606ede9bd1bf0c13b59c26a63755a2f95f6b8da6 /modules/sub_quadratic_attention.py | |
parent | 1a5b86ad65fd738eadea1ad72f4abad3a4aabf17 (diff) | |
parent | c18add68ef7d2de3617cbbaff864b0c74cfdf6c0 (diff) | |
download | stable-diffusion-webui-gfx803-c295e4a2446bcc2663f497ba8afa14cec80de332.tar.gz stable-diffusion-webui-gfx803-c295e4a2446bcc2663f497ba8afa14cec80de332.tar.bz2 stable-diffusion-webui-gfx803-c295e4a2446bcc2663f497ba8afa14cec80de332.zip |
Merge pull request #6055 from brkirch/sub-quad_attn_opt
Add Birch-san's sub-quadratic attention implementation
Diffstat (limited to 'modules/sub_quadratic_attention.py')
-rw-r--r-- | modules/sub_quadratic_attention.py | 205 |
1 files changed, 205 insertions, 0 deletions
diff --git a/modules/sub_quadratic_attention.py b/modules/sub_quadratic_attention.py new file mode 100644 index 00000000..fea7aaac --- /dev/null +++ b/modules/sub_quadratic_attention.py @@ -0,0 +1,205 @@ +# original source: +# https://github.com/AminRezaei0x443/memory-efficient-attention/blob/1bc0d9e6ac5f82ea43a375135c4e1d3896ee1694/memory_efficient_attention/attention_torch.py +# license: +# MIT License (see Memory Efficient Attention under the Licenses section in the web UI interface for the full license) +# credit: +# Amin Rezaei (original author) +# Alex Birch (optimized algorithm for 3D tensors, at the expense of removing bias, masking and callbacks) +# brkirch (modified to use torch.narrow instead of dynamic_slice implementation) +# implementation of: +# Self-attention Does Not Need O(n2) Memory": +# https://arxiv.org/abs/2112.05682v2 + +from functools import partial +import torch +from torch import Tensor +from torch.utils.checkpoint import checkpoint +import math +from typing import Optional, NamedTuple, Protocol, List + +def narrow_trunc( + input: Tensor, + dim: int, + start: int, + length: int +) -> Tensor: + return torch.narrow(input, dim, start, length if input.shape[dim] >= start + length else input.shape[dim] - start) + +class AttnChunk(NamedTuple): + exp_values: Tensor + exp_weights_sum: Tensor + max_score: Tensor + +class SummarizeChunk(Protocol): + @staticmethod + def __call__( + query: Tensor, + key: Tensor, + value: Tensor, + ) -> AttnChunk: ... + +class ComputeQueryChunkAttn(Protocol): + @staticmethod + def __call__( + query: Tensor, + key: Tensor, + value: Tensor, + ) -> Tensor: ... + +def _summarize_chunk( + query: Tensor, + key: Tensor, + value: Tensor, + scale: float, +) -> AttnChunk: + attn_weights = torch.baddbmm( + torch.empty(1, 1, 1, device=query.device, dtype=query.dtype), + query, + key.transpose(1,2), + alpha=scale, + beta=0, + ) + max_score, _ = torch.max(attn_weights, -1, keepdim=True) + max_score = max_score.detach() + exp_weights = torch.exp(attn_weights - max_score) + exp_values = torch.bmm(exp_weights, value) + max_score = max_score.squeeze(-1) + return AttnChunk(exp_values, exp_weights.sum(dim=-1), max_score) + +def _query_chunk_attention( + query: Tensor, + key: Tensor, + value: Tensor, + summarize_chunk: SummarizeChunk, + kv_chunk_size: int, +) -> Tensor: + batch_x_heads, k_tokens, k_channels_per_head = key.shape + _, _, v_channels_per_head = value.shape + + def chunk_scanner(chunk_idx: int) -> AttnChunk: + key_chunk = narrow_trunc( + key, + 1, + chunk_idx, + kv_chunk_size + ) + value_chunk = narrow_trunc( + value, + 1, + chunk_idx, + kv_chunk_size + ) + return summarize_chunk(query, key_chunk, value_chunk) + + chunks: List[AttnChunk] = [ + chunk_scanner(chunk) for chunk in torch.arange(0, k_tokens, kv_chunk_size) + ] + acc_chunk = AttnChunk(*map(torch.stack, zip(*chunks))) + chunk_values, chunk_weights, chunk_max = acc_chunk + + global_max, _ = torch.max(chunk_max, 0, keepdim=True) + max_diffs = torch.exp(chunk_max - global_max) + chunk_values *= torch.unsqueeze(max_diffs, -1) + chunk_weights *= max_diffs + + all_values = chunk_values.sum(dim=0) + all_weights = torch.unsqueeze(chunk_weights, -1).sum(dim=0) + return all_values / all_weights + +# TODO: refactor CrossAttention#get_attention_scores to share code with this +def _get_attention_scores_no_kv_chunking( + query: Tensor, + key: Tensor, + value: Tensor, + scale: float, +) -> Tensor: + attn_scores = torch.baddbmm( + torch.empty(1, 1, 1, device=query.device, dtype=query.dtype), + query, + key.transpose(1,2), + alpha=scale, + beta=0, + ) + attn_probs = attn_scores.softmax(dim=-1) + del attn_scores + hidden_states_slice = torch.bmm(attn_probs, value) + return hidden_states_slice + +class ScannedChunk(NamedTuple): + chunk_idx: int + attn_chunk: AttnChunk + +def efficient_dot_product_attention( + query: Tensor, + key: Tensor, + value: Tensor, + query_chunk_size=1024, + kv_chunk_size: Optional[int] = None, + kv_chunk_size_min: Optional[int] = None, + use_checkpoint=True, +): + """Computes efficient dot-product attention given query, key, and value. + This is efficient version of attention presented in + https://arxiv.org/abs/2112.05682v2 which comes with O(sqrt(n)) memory requirements. + Args: + query: queries for calculating attention with shape of + `[batch * num_heads, tokens, channels_per_head]`. + key: keys for calculating attention with shape of + `[batch * num_heads, tokens, channels_per_head]`. + value: values to be used in attention with shape of + `[batch * num_heads, tokens, channels_per_head]`. + query_chunk_size: int: query chunks size + kv_chunk_size: Optional[int]: key/value chunks size. if None: defaults to sqrt(key_tokens) + kv_chunk_size_min: Optional[int]: key/value minimum chunk size. only considered when kv_chunk_size is None. changes `sqrt(key_tokens)` into `max(sqrt(key_tokens), kv_chunk_size_min)`, to ensure our chunk sizes don't get too small (smaller chunks = more chunks = less concurrent work done). + use_checkpoint: bool: whether to use checkpointing (recommended True for training, False for inference) + Returns: + Output of shape `[batch * num_heads, query_tokens, channels_per_head]`. + """ + batch_x_heads, q_tokens, q_channels_per_head = query.shape + _, k_tokens, _ = key.shape + scale = q_channels_per_head ** -0.5 + + kv_chunk_size = min(kv_chunk_size or int(math.sqrt(k_tokens)), k_tokens) + if kv_chunk_size_min is not None: + kv_chunk_size = max(kv_chunk_size, kv_chunk_size_min) + + def get_query_chunk(chunk_idx: int) -> Tensor: + return narrow_trunc( + query, + 1, + chunk_idx, + min(query_chunk_size, q_tokens) + ) + + summarize_chunk: SummarizeChunk = partial(_summarize_chunk, scale=scale) + summarize_chunk: SummarizeChunk = partial(checkpoint, summarize_chunk) if use_checkpoint else summarize_chunk + compute_query_chunk_attn: ComputeQueryChunkAttn = partial( + _get_attention_scores_no_kv_chunking, + scale=scale + ) if k_tokens <= kv_chunk_size else ( + # fast-path for when there's just 1 key-value chunk per query chunk (this is just sliced attention btw) + partial( + _query_chunk_attention, + kv_chunk_size=kv_chunk_size, + summarize_chunk=summarize_chunk, + ) + ) + + if q_tokens <= query_chunk_size: + # fast-path for when there's just 1 query chunk + return compute_query_chunk_attn( + query=query, + key=key, + value=value, + ) + + # TODO: maybe we should use torch.empty_like(query) to allocate storage in-advance, + # and pass slices to be mutated, instead of torch.cat()ing the returned slices + res = torch.cat([ + compute_query_chunk_attn( + query=get_query_chunk(i * query_chunk_size), + key=key, + value=value, + ) for i in range(math.ceil(q_tokens / query_chunk_size)) + ], dim=1) + return res |