diff options
author | liamkerr <liamkerr@users.noreply.github.com> | 2022-10-02 14:02:38 +0000 |
---|---|---|
committer | GitHub <noreply@github.com> | 2022-10-02 14:02:38 +0000 |
commit | 7308aeefd9d25212398068c1a35f0b879b9ba06f (patch) | |
tree | 60f81d876522c772f85911ec4065ab3f448a8479 /modules/swinir_model.py | |
parent | 3c6a049fc3c6b54ada3736710a7e86663ea7f3d9 (diff) | |
parent | 4e72a1aab6d1b3a8d8c09fadc81843a07c05cc18 (diff) | |
download | stable-diffusion-webui-gfx803-7308aeefd9d25212398068c1a35f0b879b9ba06f.tar.gz stable-diffusion-webui-gfx803-7308aeefd9d25212398068c1a35f0b879b9ba06f.tar.bz2 stable-diffusion-webui-gfx803-7308aeefd9d25212398068c1a35f0b879b9ba06f.zip |
Merge branch 'master' into token_updates
Diffstat (limited to 'modules/swinir_model.py')
-rw-r--r-- | modules/swinir_model.py | 27 |
1 files changed, 15 insertions, 12 deletions
diff --git a/modules/swinir_model.py b/modules/swinir_model.py index 41fda5a7..9bd454c6 100644 --- a/modules/swinir_model.py +++ b/modules/swinir_model.py @@ -5,6 +5,7 @@ import numpy as np import torch from PIL import Image from basicsr.utils.download_util import load_file_from_url +from tqdm import tqdm from modules import modelloader from modules.paths import models_path @@ -122,18 +123,20 @@ def inference(img, model, tile, tile_overlap, window_size, scale): E = torch.zeros(b, c, h * sf, w * sf, dtype=torch.half, device=device).type_as(img) W = torch.zeros_like(E, dtype=torch.half, device=device) - for h_idx in h_idx_list: - for w_idx in w_idx_list: - in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile] - out_patch = model(in_patch) - out_patch_mask = torch.ones_like(out_patch) - - E[ - ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf - ].add_(out_patch) - W[ - ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf - ].add_(out_patch_mask) + with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="SwinIR tiles") as pbar: + for h_idx in h_idx_list: + for w_idx in w_idx_list: + in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile] + out_patch = model(in_patch) + out_patch_mask = torch.ones_like(out_patch) + + E[ + ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf + ].add_(out_patch) + W[ + ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf + ].add_(out_patch_mask) + pbar.update(1) output = E.div_(W) return output |