diff options
author | Jairo Correa <jn.j41r0@gmail.com> | 2022-09-30 21:58:51 +0000 |
---|---|---|
committer | Jairo Correa <jn.j41r0@gmail.com> | 2022-09-30 21:58:51 +0000 |
commit | ad1fbbae93fa17f797a76bc59220d074990b85b4 (patch) | |
tree | 79ff375c07afee8597598bbcc6fb693ff912dab4 /modules/swinir_model.py | |
parent | c2d5b29040132c171bc4d77f1f63da972306f22c (diff) | |
parent | 84e97a98c5233119d0f444e0a3a0f6391da23677 (diff) | |
download | stable-diffusion-webui-gfx803-ad1fbbae93fa17f797a76bc59220d074990b85b4.tar.gz stable-diffusion-webui-gfx803-ad1fbbae93fa17f797a76bc59220d074990b85b4.tar.bz2 stable-diffusion-webui-gfx803-ad1fbbae93fa17f797a76bc59220d074990b85b4.zip |
Merge branch 'master' into fix-vram
Diffstat (limited to 'modules/swinir_model.py')
-rw-r--r-- | modules/swinir_model.py | 139 |
1 files changed, 139 insertions, 0 deletions
diff --git a/modules/swinir_model.py b/modules/swinir_model.py new file mode 100644 index 00000000..41fda5a7 --- /dev/null +++ b/modules/swinir_model.py @@ -0,0 +1,139 @@ +import contextlib +import os + +import numpy as np +import torch +from PIL import Image +from basicsr.utils.download_util import load_file_from_url + +from modules import modelloader +from modules.paths import models_path +from modules.shared import cmd_opts, opts, device +from modules.swinir_model_arch import SwinIR as net +from modules.upscaler import Upscaler, UpscalerData + +precision_scope = ( + torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext +) + + +class UpscalerSwinIR(Upscaler): + def __init__(self, dirname): + self.name = "SwinIR" + self.model_url = "https://github.com/JingyunLiang/SwinIR/releases/download/v0.0" \ + "/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR" \ + "-L_x4_GAN.pth " + self.model_name = "SwinIR 4x" + self.model_path = os.path.join(models_path, self.name) + self.user_path = dirname + super().__init__() + scalers = [] + model_files = self.find_models(ext_filter=[".pt", ".pth"]) + for model in model_files: + if "http" in model: + name = self.model_name + else: + name = modelloader.friendly_name(model) + model_data = UpscalerData(name, model, self) + scalers.append(model_data) + self.scalers = scalers + + def do_upscale(self, img, model_file): + model = self.load_model(model_file) + if model is None: + return img + model = model.to(device) + img = upscale(img, model) + try: + torch.cuda.empty_cache() + except: + pass + return img + + def load_model(self, path, scale=4): + if "http" in path: + dl_name = "%s%s" % (self.model_name.replace(" ", "_"), ".pth") + filename = load_file_from_url(url=path, model_dir=self.model_path, file_name=dl_name, progress=True) + else: + filename = path + if filename is None or not os.path.exists(filename): + return None + model = net( + upscale=scale, + in_chans=3, + img_size=64, + window_size=8, + img_range=1.0, + depths=[6, 6, 6, 6, 6, 6, 6, 6, 6], + embed_dim=240, + num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8], + mlp_ratio=2, + upsampler="nearest+conv", + resi_connection="3conv", + ) + + pretrained_model = torch.load(filename) + model.load_state_dict(pretrained_model["params_ema"], strict=True) + if not cmd_opts.no_half: + model = model.half() + return model + + +def upscale( + img, + model, + tile=opts.SWIN_tile, + tile_overlap=opts.SWIN_tile_overlap, + window_size=8, + scale=4, +): + img = np.array(img) + img = img[:, :, ::-1] + img = np.moveaxis(img, 2, 0) / 255 + img = torch.from_numpy(img).float() + img = img.unsqueeze(0).to(device) + with torch.no_grad(), precision_scope("cuda"): + _, _, h_old, w_old = img.size() + h_pad = (h_old // window_size + 1) * window_size - h_old + w_pad = (w_old // window_size + 1) * window_size - w_old + img = torch.cat([img, torch.flip(img, [2])], 2)[:, :, : h_old + h_pad, :] + img = torch.cat([img, torch.flip(img, [3])], 3)[:, :, :, : w_old + w_pad] + output = inference(img, model, tile, tile_overlap, window_size, scale) + output = output[..., : h_old * scale, : w_old * scale] + output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy() + if output.ndim == 3: + output = np.transpose( + output[[2, 1, 0], :, :], (1, 2, 0) + ) # CHW-RGB to HCW-BGR + output = (output * 255.0).round().astype(np.uint8) # float32 to uint8 + return Image.fromarray(output, "RGB") + + +def inference(img, model, tile, tile_overlap, window_size, scale): + # test the image tile by tile + b, c, h, w = img.size() + tile = min(tile, h, w) + assert tile % window_size == 0, "tile size should be a multiple of window_size" + sf = scale + + stride = tile - tile_overlap + h_idx_list = list(range(0, h - tile, stride)) + [h - tile] + w_idx_list = list(range(0, w - tile, stride)) + [w - tile] + E = torch.zeros(b, c, h * sf, w * sf, dtype=torch.half, device=device).type_as(img) + W = torch.zeros_like(E, dtype=torch.half, device=device) + + for h_idx in h_idx_list: + for w_idx in w_idx_list: + in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile] + out_patch = model(in_patch) + out_patch_mask = torch.ones_like(out_patch) + + E[ + ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf + ].add_(out_patch) + W[ + ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf + ].add_(out_patch_mask) + output = E.div_(W) + + return output |