aboutsummaryrefslogtreecommitdiffstats
path: root/modules/swinir_model.py
diff options
context:
space:
mode:
authorAUTOMATIC1111 <16777216c@gmail.com>2022-10-12 07:35:42 +0000
committerGitHub <noreply@github.com>2022-10-12 07:35:42 +0000
commitdc1432e0dd2b826bbf5aee3e87d8270c151e4912 (patch)
tree276c27910e8ec38a1a054df02c67f73a84cb35df /modules/swinir_model.py
parent1d64976dbc5a0f3124567b91fadd5014a9d93c5f (diff)
parentca5efc316b9431746ff886d259275310f63f95fb (diff)
downloadstable-diffusion-webui-gfx803-dc1432e0dd2b826bbf5aee3e87d8270c151e4912.tar.gz
stable-diffusion-webui-gfx803-dc1432e0dd2b826bbf5aee3e87d8270c151e4912.tar.bz2
stable-diffusion-webui-gfx803-dc1432e0dd2b826bbf5aee3e87d8270c151e4912.zip
Merge branch 'master' into feature/scale_to
Diffstat (limited to 'modules/swinir_model.py')
-rw-r--r--modules/swinir_model.py35
1 files changed, 28 insertions, 7 deletions
diff --git a/modules/swinir_model.py b/modules/swinir_model.py
index fbd11f84..baa02e3d 100644
--- a/modules/swinir_model.py
+++ b/modules/swinir_model.py
@@ -10,6 +10,7 @@ from tqdm import tqdm
from modules import modelloader
from modules.shared import cmd_opts, opts, device
from modules.swinir_model_arch import SwinIR as net
+from modules.swinir_model_arch_v2 import Swin2SR as net2
from modules.upscaler import Upscaler, UpscalerData
precision_scope = (
@@ -57,22 +58,42 @@ class UpscalerSwinIR(Upscaler):
filename = path
if filename is None or not os.path.exists(filename):
return None
- model = net(
+ if filename.endswith(".v2.pth"):
+ model = net2(
upscale=scale,
in_chans=3,
img_size=64,
window_size=8,
img_range=1.0,
- depths=[6, 6, 6, 6, 6, 6, 6, 6, 6],
- embed_dim=240,
- num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8],
+ depths=[6, 6, 6, 6, 6, 6],
+ embed_dim=180,
+ num_heads=[6, 6, 6, 6, 6, 6],
mlp_ratio=2,
upsampler="nearest+conv",
- resi_connection="3conv",
- )
+ resi_connection="1conv",
+ )
+ params = None
+ else:
+ model = net(
+ upscale=scale,
+ in_chans=3,
+ img_size=64,
+ window_size=8,
+ img_range=1.0,
+ depths=[6, 6, 6, 6, 6, 6, 6, 6, 6],
+ embed_dim=240,
+ num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8],
+ mlp_ratio=2,
+ upsampler="nearest+conv",
+ resi_connection="3conv",
+ )
+ params = "params_ema"
pretrained_model = torch.load(filename)
- model.load_state_dict(pretrained_model["params_ema"], strict=True)
+ if params is not None:
+ model.load_state_dict(pretrained_model[params], strict=True)
+ else:
+ model.load_state_dict(pretrained_model, strict=True)
if not cmd_opts.no_half:
model = model.half()
return model