aboutsummaryrefslogtreecommitdiffstats
path: root/modules/swinir_model.py
diff options
context:
space:
mode:
authoralg-wiki <47810160+alg-wiki@users.noreply.github.com>2022-10-10 19:35:28 +0000
committerGitHub <noreply@github.com>2022-10-10 19:35:28 +0000
commitf0ab972f85b4a185e7ff74b6f325835f1135deff (patch)
tree1719b7d8019c44aa55d51432d708ce8c9ca325d3 /modules/swinir_model.py
parentbc3e183b739913e7be91213a256f038b10eb71e9 (diff)
parent5da1ba0e91a81804dc911d34c9a2e6956a23199c (diff)
downloadstable-diffusion-webui-gfx803-f0ab972f85b4a185e7ff74b6f325835f1135deff.tar.gz
stable-diffusion-webui-gfx803-f0ab972f85b4a185e7ff74b6f325835f1135deff.tar.bz2
stable-diffusion-webui-gfx803-f0ab972f85b4a185e7ff74b6f325835f1135deff.zip
Merge branch 'master' into textual__inversion
Diffstat (limited to 'modules/swinir_model.py')
-rw-r--r--modules/swinir_model.py35
1 files changed, 28 insertions, 7 deletions
diff --git a/modules/swinir_model.py b/modules/swinir_model.py
index fbd11f84..baa02e3d 100644
--- a/modules/swinir_model.py
+++ b/modules/swinir_model.py
@@ -10,6 +10,7 @@ from tqdm import tqdm
from modules import modelloader
from modules.shared import cmd_opts, opts, device
from modules.swinir_model_arch import SwinIR as net
+from modules.swinir_model_arch_v2 import Swin2SR as net2
from modules.upscaler import Upscaler, UpscalerData
precision_scope = (
@@ -57,22 +58,42 @@ class UpscalerSwinIR(Upscaler):
filename = path
if filename is None or not os.path.exists(filename):
return None
- model = net(
+ if filename.endswith(".v2.pth"):
+ model = net2(
upscale=scale,
in_chans=3,
img_size=64,
window_size=8,
img_range=1.0,
- depths=[6, 6, 6, 6, 6, 6, 6, 6, 6],
- embed_dim=240,
- num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8],
+ depths=[6, 6, 6, 6, 6, 6],
+ embed_dim=180,
+ num_heads=[6, 6, 6, 6, 6, 6],
mlp_ratio=2,
upsampler="nearest+conv",
- resi_connection="3conv",
- )
+ resi_connection="1conv",
+ )
+ params = None
+ else:
+ model = net(
+ upscale=scale,
+ in_chans=3,
+ img_size=64,
+ window_size=8,
+ img_range=1.0,
+ depths=[6, 6, 6, 6, 6, 6, 6, 6, 6],
+ embed_dim=240,
+ num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8],
+ mlp_ratio=2,
+ upsampler="nearest+conv",
+ resi_connection="3conv",
+ )
+ params = "params_ema"
pretrained_model = torch.load(filename)
- model.load_state_dict(pretrained_model["params_ema"], strict=True)
+ if params is not None:
+ model.load_state_dict(pretrained_model[params], strict=True)
+ else:
+ model.load_state_dict(pretrained_model, strict=True)
if not cmd_opts.no_half:
model = model.half()
return model