diff options
author | AUTOMATIC1111 <16777216c@gmail.com> | 2023-01-06 04:59:44 +0000 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-01-06 04:59:44 +0000 |
commit | 88e01b237e60730338823ac4f11972a98d698ce7 (patch) | |
tree | 0d387fe61d1171fe87885d74b754249693253474 /modules/textual_inversion/textual_inversion.py | |
parent | 143ed5a42dae135e7ad991b8666e3cfa7d905ac2 (diff) | |
parent | b6bab2f052b32c0ffebe6aecc1819ccf20cf8c5d (diff) | |
download | stable-diffusion-webui-gfx803-88e01b237e60730338823ac4f11972a98d698ce7.tar.gz stable-diffusion-webui-gfx803-88e01b237e60730338823ac4f11972a98d698ce7.tar.bz2 stable-diffusion-webui-gfx803-88e01b237e60730338823ac4f11972a98d698ce7.zip |
Merge pull request #6372 from timntorres/save-ti-hypernet-settings-to-txt-revised
Save hypernet and textual inversion settings to text file, revised.
Diffstat (limited to 'modules/textual_inversion/textual_inversion.py')
-rw-r--r-- | modules/textual_inversion/textual_inversion.py | 26 |
1 files changed, 25 insertions, 1 deletions
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 0a059044..e9cf432f 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -1,6 +1,7 @@ import os
import sys
import traceback
+import inspect
import torch
import tqdm
@@ -230,6 +231,26 @@ def write_loss(log_directory, filename, step, epoch_len, values): **values,
})
+# Note: hypernetwork.py has a nearly identical function of the same name.
+def save_settings_to_file(model_name, model_hash, initial_step, num_of_dataset_images, embedding_name, vectors_per_token, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
+ # Starting index of preview-related arguments.
+ border_index = 18
+ # Get a list of the argument names.
+ arg_names = inspect.getfullargspec(save_settings_to_file).args
+ # Create a list of the argument names to include in the settings string.
+ names = arg_names[:border_index] # Include all arguments up until the preview-related ones.
+ if preview_from_txt2img:
+ names.extend(arg_names[border_index:]) # Include preview-related arguments if applicable.
+ # Build the settings string.
+ settings_str = "datetime : " + datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") + "\n"
+ for name in names:
+ if name != 'log_directory': # It's useless and redundant to save log_directory.
+ value = locals()[name]
+ settings_str += f"{name}: {value}\n"
+ # Create or append to the file.
+ with open(os.path.join(log_directory, 'settings.txt'), "a+") as fout:
+ fout.write(settings_str + "\n\n")
+
def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, data_root, template_file, steps, save_model_every, create_image_every, log_directory, name="embedding"):
assert model_name, f"{name} not selected"
assert learn_rate, "Learning rate is empty or 0"
@@ -293,8 +314,8 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_ if initial_step >= steps:
shared.state.textinfo = "Model has already been trained beyond specified max steps"
return embedding, filename
+
scheduler = LearnRateScheduler(learn_rate, steps, initial_step)
-
clip_grad = torch.nn.utils.clip_grad_value_ if clip_grad_mode == "value" else \
torch.nn.utils.clip_grad_norm_ if clip_grad_mode == "norm" else \
None
@@ -308,6 +329,9 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_ ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method)
+ if shared.opts.save_training_settings_to_txt:
+ save_settings_to_file(checkpoint.model_name, '[{}]'.format(checkpoint.hash), initial_step, len(ds), embedding_name, len(embedding.vec), learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height)
+
latent_sampling_method = ds.latent_sampling_method
dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method, batch_size=ds.batch_size, pin_memory=pin_memory)
|