aboutsummaryrefslogtreecommitdiffstats
path: root/modules/textual_inversion/textual_inversion.py
diff options
context:
space:
mode:
authorAUTOMATIC <16777216c@gmail.com>2023-01-14 06:56:59 +0000
committerAUTOMATIC <16777216c@gmail.com>2023-01-14 06:56:59 +0000
commita95f1353089bdeaccd7c266b40cdd79efedfe632 (patch)
tree03f8e733c89436f31526b513a6435a9a4d9174c5 /modules/textual_inversion/textual_inversion.py
parent82725f0ac439f7e3b67858d55900e95330bbd326 (diff)
downloadstable-diffusion-webui-gfx803-a95f1353089bdeaccd7c266b40cdd79efedfe632.tar.gz
stable-diffusion-webui-gfx803-a95f1353089bdeaccd7c266b40cdd79efedfe632.tar.bz2
stable-diffusion-webui-gfx803-a95f1353089bdeaccd7c266b40cdd79efedfe632.zip
change hash to sha256
Diffstat (limited to 'modules/textual_inversion/textual_inversion.py')
-rw-r--r--modules/textual_inversion/textual_inversion.py6
1 files changed, 3 insertions, 3 deletions
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index 6939efcc..63935878 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -407,7 +407,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method, varsize=varsize)
if shared.opts.save_training_settings_to_txt:
- save_settings_to_file(log_directory, {**dict(model_name=checkpoint.model_name, model_hash=checkpoint.hash, num_of_dataset_images=len(ds), num_vectors_per_token=len(embedding.vec)), **locals()})
+ save_settings_to_file(log_directory, {**dict(model_name=checkpoint.model_name, model_hash=checkpoint.shorthash, num_of_dataset_images=len(ds), num_vectors_per_token=len(embedding.vec)), **locals()})
latent_sampling_method = ds.latent_sampling_method
@@ -584,7 +584,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
checkpoint = sd_models.select_checkpoint()
footer_left = checkpoint.model_name
- footer_mid = '[{}]'.format(checkpoint.hash)
+ footer_mid = '[{}]'.format(checkpoint.shorthash)
footer_right = '{}v {}s'.format(vectorSize, steps_done)
captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right)
@@ -626,7 +626,7 @@ def save_embedding(embedding, optimizer, checkpoint, embedding_name, filename, r
old_sd_checkpoint_name = embedding.sd_checkpoint_name if hasattr(embedding, "sd_checkpoint_name") else None
old_cached_checksum = embedding.cached_checksum if hasattr(embedding, "cached_checksum") else None
try:
- embedding.sd_checkpoint = checkpoint.hash
+ embedding.sd_checkpoint = checkpoint.shorthash
embedding.sd_checkpoint_name = checkpoint.model_name
if remove_cached_checksum:
embedding.cached_checksum = None