diff options
author | Shondoit <shondoit@gmail.com> | 2023-01-03 09:26:37 +0000 |
---|---|---|
committer | Shondoit <shondoit@gmail.com> | 2023-01-03 12:30:24 +0000 |
commit | bddebe09edeb6a18f2c06986d5658a7be3a563ea (patch) | |
tree | 0b661b77cc1c4a3684c2c5f02993aa3ed933f6e8 /modules/textual_inversion/textual_inversion.py | |
parent | c0ee1488702d5a6ae35fbf7e0422f9f685394920 (diff) | |
download | stable-diffusion-webui-gfx803-bddebe09edeb6a18f2c06986d5658a7be3a563ea.tar.gz stable-diffusion-webui-gfx803-bddebe09edeb6a18f2c06986d5658a7be3a563ea.tar.bz2 stable-diffusion-webui-gfx803-bddebe09edeb6a18f2c06986d5658a7be3a563ea.zip |
Save Optimizer next to TI embedding
Also add check to load only .PT and .BIN files as embeddings. (since we add .optim files in the same directory)
Diffstat (limited to 'modules/textual_inversion/textual_inversion.py')
-rw-r--r-- | modules/textual_inversion/textual_inversion.py | 40 |
1 files changed, 32 insertions, 8 deletions
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index fd253477..16176e90 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -28,6 +28,7 @@ class Embedding: self.cached_checksum = None
self.sd_checkpoint = None
self.sd_checkpoint_name = None
+ self.optimizer_state_dict = None
def save(self, filename):
embedding_data = {
@@ -41,6 +42,13 @@ class Embedding: torch.save(embedding_data, filename)
+ if shared.opts.save_optimizer_state and self.optimizer_state_dict is not None:
+ optimizer_saved_dict = {
+ 'hash': self.checksum(),
+ 'optimizer_state_dict': self.optimizer_state_dict,
+ }
+ torch.save(optimizer_saved_dict, filename + '.optim')
+
def checksum(self):
if self.cached_checksum is not None:
return self.cached_checksum
@@ -95,9 +103,10 @@ class EmbeddingDatabase: self.expected_shape = self.get_expected_shape()
def process_file(path, filename):
- name = os.path.splitext(filename)[0]
+ name, ext = os.path.splitext(filename)
+ ext = ext.upper()
- if os.path.splitext(filename.upper())[-1] in ['.PNG', '.WEBP', '.JXL', '.AVIF']:
+ if ext in ['.PNG', '.WEBP', '.JXL', '.AVIF']:
embed_image = Image.open(path)
if hasattr(embed_image, 'text') and 'sd-ti-embedding' in embed_image.text:
data = embedding_from_b64(embed_image.text['sd-ti-embedding'])
@@ -105,8 +114,10 @@ class EmbeddingDatabase: else:
data = extract_image_data_embed(embed_image)
name = data.get('name', name)
- else:
+ elif ext in ['.BIN', '.PT']:
data = torch.load(path, map_location="cpu")
+ else:
+ return
# textual inversion embeddings
if 'string_to_param' in data:
@@ -300,6 +311,20 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_ embedding.vec.requires_grad = True
optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate, weight_decay=0.0)
+ if shared.opts.save_optimizer_state:
+ optimizer_state_dict = None
+ if os.path.exists(filename + '.optim'):
+ optimizer_saved_dict = torch.load(filename + '.optim', map_location='cpu')
+ if embedding.checksum() == optimizer_saved_dict.get('hash', None):
+ optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None)
+
+ if optimizer_state_dict is not None:
+ optimizer.load_state_dict(optimizer_state_dict)
+ print("Loaded existing optimizer from checkpoint")
+ else:
+ print("No saved optimizer exists in checkpoint")
+
+
scaler = torch.cuda.amp.GradScaler()
batch_size = ds.batch_size
@@ -366,9 +391,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_ # Before saving, change name to match current checkpoint.
embedding_name_every = f'{embedding_name}-{steps_done}'
last_saved_file = os.path.join(embedding_dir, f'{embedding_name_every}.pt')
- #if shared.opts.save_optimizer_state:
- #embedding.optimizer_state_dict = optimizer.state_dict()
- save_embedding(embedding, checkpoint, embedding_name_every, last_saved_file, remove_cached_checksum=True)
+ save_embedding(embedding, optimizer, checkpoint, embedding_name_every, last_saved_file, remove_cached_checksum=True)
embedding_yet_to_be_embedded = True
write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, steps_per_epoch, {
@@ -458,7 +481,7 @@ Last saved image: {html.escape(last_saved_image)}<br/> </p>
"""
filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt')
- save_embedding(embedding, checkpoint, embedding_name, filename, remove_cached_checksum=True)
+ save_embedding(embedding, optimizer, checkpoint, embedding_name, filename, remove_cached_checksum=True)
except Exception:
print(traceback.format_exc(), file=sys.stderr)
pass
@@ -470,7 +493,7 @@ Last saved image: {html.escape(last_saved_image)}<br/> return embedding, filename
-def save_embedding(embedding, checkpoint, embedding_name, filename, remove_cached_checksum=True):
+def save_embedding(embedding, optimizer, checkpoint, embedding_name, filename, remove_cached_checksum=True):
old_embedding_name = embedding.name
old_sd_checkpoint = embedding.sd_checkpoint if hasattr(embedding, "sd_checkpoint") else None
old_sd_checkpoint_name = embedding.sd_checkpoint_name if hasattr(embedding, "sd_checkpoint_name") else None
@@ -481,6 +504,7 @@ def save_embedding(embedding, checkpoint, embedding_name, filename, remove_cache if remove_cached_checksum:
embedding.cached_checksum = None
embedding.name = embedding_name
+ embedding.optimizer_state_dict = optimizer.state_dict()
embedding.save(filename)
except:
embedding.sd_checkpoint = old_sd_checkpoint
|